
Coordination and Learning
in Cooperative Multiagent Systems

Jelle R. Kok

Coordination and Learning
in Cooperative Multiagent Systems

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. mr. P. F. van der Heijden

ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit

op vrijdag 3 november 2006, te 10:00 uur

door

Jelle Rogier Kok

geboren te Amsterdam

Promotiecommissie:

Promotor: Prof. dr. ir. F. C. A. Groen

Copromotor: Dr. N. Vlassis

Overige leden: Prof. drs. M. Boasson

Prof. dr. H. J. Kappen

Prof. dr. ir. J. A. La Poutré

Dr. M. van Someren

Dr. P. Stone

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research has been performed at the IAS group of the University of Amsterdam
and has been supported by PROGRESS, the embedded systems research program of
the Dutch organization for Scientific Research NWO, the Dutch Ministry of Economic
Affairs, and the Technology Foundation STW, project AES.5414.

Advanced School for Computing and Imaging

This work has been carried out in the ASCI graduate school.
ASCI dissertation series number 133.

ISBN-10: 90-9021073-3
ISBN-13: 978-90-9021073-5
c© 2006, J. R. Kok, all rights reserved.

Contents

1 Introduction 1
1.1 Multiagent systems . 2
1.2 Coordination . 3
1.3 Sequential decision making . 5
1.4 Objective of the thesis . 6
1.5 Outlook . 7

2 A Review of Markov Models 9
2.1 Introduction . 9
2.2 Single-agent models . 10

2.2.1 Characteristics . 10
2.2.2 Formal description . 12
2.2.3 Existing Models . 16
2.2.4 Solution techniques . 17

2.3 Multiagent models . 19
2.3.1 Characteristics . 20
2.3.2 Formal description . 23
2.3.3 Existing Models . 26
2.3.4 Solution techniques . 29

2.4 Discussion . 33

3 Multiagent Coordination 35
3.1 Introduction . 35
3.2 Coordination graphs and variable elimination 36
3.3 Payoff propagation . 40

3.3.1 The max-plus algorithm . 40
3.3.2 Anytime extension . 44
3.3.3 Centralized version . 44
3.3.4 Distributed version . 44

3.4 Experiments . 48
3.4.1 Trees . 48
3.4.2 Graphs with cycles . 49

3.5 Discussion . 54

vi Contents

4 Multiagent Learning 55
4.1 Introduction . 55
4.2 Coordinated reinforcement learning . 57
4.3 Sparse cooperative Q-learning . 59

4.3.1 Agent-based decomposition . 59
4.3.2 Edge-based decomposition . 61

4.4 Experiments . 64
4.4.1 Stateless problems . 64
4.4.2 Distributed sensor network . 72

4.5 Discussion . 77

5 Context-Specific Multiagent Learning 79
5.1 Introduction . 79
5.2 Context-specific coordination graphs 81
5.3 Context-specific multiagent Q-learning 84

5.3.1 Sparse tabular multiagent Q-learning 84
5.3.2 Context-specific sparse cooperative Q-learning 86
5.3.3 Experiments . 91

5.4 Learning interdependencies . 97
5.4.1 Utile coordination . 97
5.4.2 Experiments . 99

5.5 Discussion . 103

6 Dynamic Continuous Domains 105
6.1 Introduction . 105
6.2 RoboCup . 106

6.2.1 The robot world cup initiative 106
6.2.2 The RoboCup soccer server . 108

6.3 UvA Trilearn . 111
6.4 Coordination in dynamic continuous domains 114

6.4.1 Context-specificity using roles 114
6.4.2 Non-communicating agents . 117

6.5 Experiments . 119
6.5.1 Full observability . 119
6.5.2 Partial observability . 127

6.6 Discussion . 129

7 Conclusions 131
7.1 Conclusions and contributions . 131
7.2 Future work . 133

Summary 137

Samenvatting 139

Bibliography 141

Acknowledgments 153

1

Introduction

This thesis focuses on distributed cooperative decision making. Simply stated, deci-
sion making is the process of selecting a specific action out of multiple alternatives.
This process occurs continuously in daily life. Humans, for example, have to decide
what clothes to wear, which route to take to work, what political party to vote for,
etc. Decision-making problems are always centered around a decision maker, often
referred to as an agent, which is defined as anything that is situated in an environ-
ment and acts, based on its observations of the environment and its prior knowledge
about the domain, to accomplish a certain goal. This general definition does not only
describe humans, but also robotic and software agents. As a running example for this
chapter we consider the individual players in a soccer team as agents. Each agent has
to choose an action based on the observed positions of the players on the field and
the game plan decided upon before the match. In this example, the soccer players
might be humans, but can also be robotic agents that perceive their environment with
cameras and control the ball with simple kicking devices.

We are interested in the design of intelligent decision-making agents, which is one
of the major goals of artificial intelligence (AI). Contrary to other approaches which
measure success related to human performance [Rich and Knight, 1991], we adopt
an ideal concept of intelligence, that is, we try to construct agents that are both
autonomous and rational [Poole et al., 1998; Russell and Norvig, 2003]. Autonomous
implies that the agent makes its decisions without the guidance of a user. Rational
means that the agent selects those actions that are expected to achieve the best
expected outcome based on the available information. A rational soccer player that
is in control of the ball, for example, will always pass the ball to the best positioned
teammate, even when he dislikes this teammate.

Agents are seldom stand-alone systems, but often coexist and interact with other
agents. This thesis is involved with problems consisting of multiple decision makers
that have to work together in order to accomplish their goal. This complicates the
problem significantly. Not only can the decision of one agent influence the outcome
of the other agents, but the total number of possible action combinations also grows
exponentially with the increase of the number of agents. In this thesis, we investigate
scalable, distributed solution techniques that can cope with these complications and
still ensure that the individual agents select actions resulting in coordinated behavior.

2 CHAPTER 1. INTRODUCTION

1.1 Multiagent systems

Distributed artificial intelligence is a subfield of AI which is concerned with systems
that consist of multiple independent entities that interact in a domain. Tradition-
ally, this field has been broken into two sub-disciplines: distributed problem solving
(DPS) and multiagent systems (MASs) [Sycara, 1998; Weiss, 1999; Stone and Veloso,
2000; Vlassis, 2003]. DPS focuses on developing solutions using the collective ef-
fort of multiple agents by combining their knowledge, information, and capabilities
[Durfee, 2001]. It is often applied to solve large problems by decomposing them into
smaller subtasks, each assigned to a different agent, and can therefore be regarded as
a tightly-coupled top-down approach. A MAS, on the other hand, is a loosely-coupled
bottom-up approach that aims to provide principles for the construction of complex
systems consisting of multiple independent agents, and focuses on the coordination
of the behaviors of the agents in such systems [Stone and Veloso, 2000]. In principle,
the agents in a MAS can have different, even conflicting, goals. However, in this the-
sis we are interested in cooperative MASs in which the different agents form a team
with the same goal. This is an important topic in AI since many large-scale applica-
tions, for example, robotics and the Internet, are formulated in terms of spatially or
functionally distributed entities. Collaboration enables the different entities to work
more efficiently and to complete activities they are not able to accomplish individu-
ally. More specifically, the use of a MAS has the following advantages [Sycara, 1998;
Stone, 1998; Vlassis, 2003]:

• The existence of multiple agents can speed up the operation of a system be-
cause the agents can perform the computations in parallel. This is especially
the case for domains in which the overall task can be decomposed into several
independent subtasks that can be handled by separate agents.

• A MAS usually has a high degree of robustness. In single-agent systems a single
failure can cause the entire system to crash. A MAS on the other hand degrades
gracefully: if one or several agents fail, the system will still be operational
because the remaining agents can take over the workload.

• The modularity of a MAS enables one to add new agents to the system when
necessary, and therefore has a high scalability. Adding new functionality to a
monolithic system is often much more difficult.

• A MAS can make observations and perform actions at multiple locations simul-
taneously, and therefore it can take advantage of geographical distribution.

• A MAS usually has a higher performance-cost ratio than single-agent systems.
A single robot with all the necessary capabilities for accomplishing a task is often
much more expensive than the use of multiple, cheaper, robots each having a
subset of these capabilities.

1.2. COORDINATION 3

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

intercept

defend

Figure 1.1: An example coordination problem in which each of the two soccer agents should
select a different action.

A major challenge is to formalize these type of problems and construct solu-
tions to coordinate the different behaviors of the agents. Application domains in
which these types of coordination problems are addressed include network routing
[Boyan and Littman, 1994; Dutta et al., 2005], sensor networks [Lesser et al., 2003;
Modi et al., 2005], but also distributed spacecraft missions [Clement and Barrett,
2003], tactical aircraft simulation [Marc et al., 2004], and supply chain management
[Chaib-draa and Müller, 2006].

1.2 Coordination

We are interested in fully cooperative multiagent systems in which all agents share
a common goal. Each agent selects actions individually, but it is the resulting joint
action that produces the outcome. A key aspect in such systems is therefore the
problem of coordination: the process that ensures that the individual decisions of the
agents result in (near-)optimal decisions for the group as a whole. Fig. 1.1 shows
a simple example of a coordination problem in which each of the two soccer agents
has to choose between two tasks: intercept the ball or move to a defensive position.
Without knowing the choice of the other agent, the goal of the agents is to select
an action that differs from the other agent. The coordination problem addresses the
important question how the agents should select their individual actions.

Boutilier [1996] assumes the agents know the outcome of each possible joint action,
and thus are able to determine the set of all optimal joint actions, also called equi-
librium in this context. In the example in Fig. 1.1 this corresponds to the two joint
actions in which the actions differ. Now, the coordination problem is simplified to the
problem of agreeing on a single joint action from this set. Boutilier [1996] gives three
different solution techniques to this problem: communication, social conventions, and
learning. Communication allows each agent, in a predefined sequence, to inform the
other agents of its action, restricting the choice of the other agents. Social conventions

4 CHAPTER 1. INTRODUCTION

Figure 1.2: An example coordination graph which models the dependencies between the
agents on a soccer field. Only nearby agents are connected.

are constraints on the action choices of the agents. Beforehand, the agents agree upon
a priority ordering of agents and actions. When an action has to be selected, each
agent derives which actions the agents with a higher priority will perform, and selects
its own action accordingly. A common example of a social convention is the right-of-
way rule in traffic in which an agent coming from the right has priority in crossing
a crossroad. The agent coming from the right knows it has the highest priority and
decides to drive through (action with highest priority). The other agent can derive
the action of the first agent, and decides to stop. Finally, learning methods can be
applied to learn the behavior of the agents through repeated interaction.

The problem with the aforementioned approaches, however, is that they require
the computation of all optimal joint actions. This becomes infeasible for problems
with many agents because the number of action combinations grows exponentially
with the number of agents. Fortunately, in many problems the action of one agent
does not depend on the actions of all other agents, but only on a small subset of the
agents. For example, in many real-world domains only nearby agents have to coor-
dinate their actions, and agents which are positioned far away from each other can
act independently. In such situations, we can model the dependencies between the
agents using a coordination graph (CG) [Guestrin et al., 2002a]. In a CG, each node
represents an agent, and an edge between agents indicates a local coordination depen-
dency. Instead of specifying the outcome for every possible joint action combination,
in this case only the outcome for each local dependency has to be specified. This
allows for the decomposition of the global coordination problem into a combination
of simpler problems. Fig. 1.2 shows an example of a CG that models the coordination
dependencies between the agents on a soccer field. Only interconnected agents have
to coordinate their actions. The goalkeeper, for example, only has to coordinate its
action directly with the four defenders, and can ignore the actions of the other players.

1.3. SEQUENTIAL DECISION MAKING 5

1.3 Sequential decision making

The coordination problem addresses the problem of selecting a coordinated action for
a specific situation, or state. Sequential decision making considers problems in which
an agent, or a group of agents, has to perform a sequence of actions in order to reach
a certain goal. In our soccer domain, for example, a large number of (coordinated)
actions have to be performed before a goal is scored.

We first review sequential decision-making problems from the perspective of a
single agent. In such settings the agent repeatedly interacts with its environment.
This interaction is often described using a sense-think-act loop [Russell and Norvig,
2003]. The agent observes the environment using its sensors, based on this information
it decides what action to choose, and finally executes the chosen action. The executed
action on its turn influences the environment, and the loop repeats itself when the
agent observes the changed environment. The effect of the agent’s action on the
environment might be uncertain, that is, the action does not always have the desired
result. For example, when a player decides to pass the ball to a certain teammate,
it might not always reach this teammate due to noise in the execution of the kick or
noise in the movement of the ball.

Different mathematical models exist to specify sequential decision-making prob-
lems [Puterman, 1994; Bertsekas and Tsitsiklis, 1996]. Such models define, among
others, the transition probabilities for reaching a new state when a specific action
is performed in the current state. In order to be computationally tractable, many
models assume that both the states and actions are discrete, but extensions exist
to cope with continuous-valued state and action representations. Furthermore, such
models specify a reward that the agent receives after performing an action in a specific
situation. In our soccer domain, for example, the model could specify that an agent
receives a positive reward when it scores a goal.

The goal of an agent is to optimize a performance measure based on the received
rewards. Often, this corresponds to finding a policy, that is, a function that selects the
best action for each possible situation. In our example, the agent should thus learn
to select a sequence of actions that result in scoring a goal. This is a complicated
problem because a specific decision can have long-term effects and its particular out-
come often depends on the future actions that will be performed. However, different
solution techniques exist to compute the optimal action for a specific situation. These
methods can roughly be divided into two separate fields: decision-theoretic planning
[Boutilier et al., 1999] and reinforcement learning [Sutton and Barto, 1998]. Planning
methods have access to the complete model description, and thus to the probabilistic
effect of each action. Therefore such methods are able to compute a course of actions
by considering future situations before they are actually experienced. Reinforcement-
learning techniques, on the other hand, do not have access to the model descriptions
and have to learn based on observations and rewards received while interacting with
the environment. An important consequence of the fact that the agent does not have
access to the model is that the agent occasionally has to explore the environment by
taking sub-optimal actions in order to experience all possible situations.

6 CHAPTER 1. INTRODUCTION

The existence of multiple agents in an environment has severe consequences on the
characteristics and the complexity of the problem. Complications arise, among oth-
ers, because the state and action representations grow exponentially with the number
of agents, the action of an individual agent can have a different effect on the decisions
of the other agents, the different agents have different (partial) views of the current
world state, or the agents have to choose one out of multiple equilibria. Many different
model extensions exist to model the existence of multiple agents in an environment
[Boutilier, 1996; Bernstein et al., 2002; Pynadath and Tambe, 2002; Guestrin, 2003;
Becker et al., 2003; Goldman and Zilberstein, 2004]. However, solution methods con-
structed for single-agent sequential decision-making problems are usually not directly
applicable to these models. In this thesis, we investigate scalable, distributed solu-
tion techniques that can cope with the complications resulting from the existence of
multiple agents.

1.4 Objective of the thesis

In this thesis, we focus on solution methods to coordinate the actions of a group
of cooperative agents. Our main goal is to develop scalable, distributed solution
techniques that are able to cope with the complications imposed by the existence of
multiple agents in the environment, while still ensuring that the individual agents
select actions that result in coordinated behavior. Our main approach is to only con-
sider the actual dependencies that exist between the agents. These are modeled using
the framework of coordination graphs, which is used extensively in the subsequent
chapters of this thesis.

We consider two different types of problems in this thesis. The first type of prob-
lems are coordination methods that compute a coordinated joint action for a given
situation when the dependencies and the corresponding outcomes are specified before-
hand. We present a method to compute a coordinated joint action in a distributed
manner for large groups of agents with many dependencies (Chapter 3), and show how
the CG framework can be extended to coordinate the agents in dynamic and contin-
uous domains (Chapter 6). Second, we consider methods to learn the coordinated
behavior of the agents in sequential decision-making problems in which the agents
do not have access to the model description. We will investigate solution methods
in which the agents learn to coordinate their actions when the dependencies between
the agents, but not the actual outcomes, are fixed and given beforehand (Chapter 4).
Furthermore, we also describe a method in which the agents learn to coordinate their
actions when the dependencies differ based on the current situation, and learn the
coordination dependencies automatically (Chapter 5).

For every method, we present experimental results to illustrate how our methods
can be applied to typical discrete AI problems, but also show how our coordina-
tion methods are successfully applied to large continuous domains as the RoboCup
simulation domain [Chen et al., 2003].

1.5. OUTLOOK 7

1.5 Outlook

The structure of this thesis is as follows. In Chapter 2, we give an overview of different
existing mathematical models for sequential decision making in stochastic domains
for both single- and multiagent systems. We both describe the main characteristics
and give the formal descriptions. Furthermore, we discuss several existing solution
techniques to compute an optimal policy for the agents in the described models.

In Chapter 3, we focus on coordinating the behavior of a group of cooperative
agents in a given situation. Specifically, we investigate problems in which the agents
have to decide on a joint action, which results from their individual decisions, maxi-
mizing a given payoff function. This payoff function is represented using a coordina-
tion graph which models the relevant dependencies between the agents. To compute
the joint action, we propose the max-plus algorithm, a payoff propagation algorithm
that is the decision-making analogue of belief propagation in probabilistic graphical
models. This results in a fast approximate alternative to existing exact algorithms.

In Chapter 4, we consider sequential decision-making problems in which the agents
repeatedly interact with their environment and learn to optimize the long-term re-
ward they receive from the system. We present a family of model-free multiagent
reinforcement-learning techniques, called sparse cooperative Q-learning, which ap-
proximate the global action-value function based on the topology of a fixed coordina-
tion graph, and perform local updates using the contributions of the individual agents
to the maximal global action value. In combination with the max-plus algorithm this
approach scales linearly in the number of dependencies of the problem.

In Chapter 5, we also focus on learning the behavior of a group of agents in
multiagent sequential decision-making problems, but now extend our sparse cooper-
ative Q-learning approach to cope with dependencies between the agents that differ
based on the current context. We first introduce a straightforward method, called
sparse tabular multiagent Q-learning, in which, depending on the context, either all
or none of the agents coordinate their actions. Then, we present our context-specific
sparse cooperative Q-learning approach which models the coordination dependencies
between subsets of agents using a context-specific coordination graph in which the
dependencies can change based on the current situation. Furthermore, we describe
our utile coordination approach that learns the coordination dependencies of a system
automatically based on gathered statistics during the learning phase.

In Chapter 6, we present a method to ensure that multiple robots in a dynamic,
continuous, domain select coordinated actions. Our approach is to assign roles to the
agents based on the continuous state information and then coordinate the different
roles using context-specific coordination graphs. We demonstrate that, with some
additional common knowledge assumptions, an agent can predict the actions of the
other agents, making communication superfluous. Furthermore, we describe how we
successfully implemented the proposed method into our UvA Trilearn simulated robot
soccer team which won the RoboCup-2003 World Championships in Padova, Italy.

Finally, in Chapter 7 we present some final conclusions and suggests some inter-
esting directions for future research.

2

A Review of Markov Models

In this chapter, we describe several mathematical models for sequential decision mak-
ing in stochastic domains for both single- and multiagent systems. It introduces many
of the basic concepts, methods, and notations used in the subsequent chapters. For a
more in-depth review, we refer the reader to Puterman [1994]; Bertsekas and Tsitsiklis
[1996]; Sutton and Barto [1998]; Russell and Norvig [2003].

2.1 Introduction

A woman orders a white wine in a restaurant. A truck driver turns left at a crossroad.
A soccer player shoots at the goal. All these examples have in common that the
performed action has been preceded by a decision, that is, the selection of one action
out of multiple alternatives. Another common property is that the decision depends
on the circumstance in which it was taken. For example, the woman’s wine choice
depends on the food she is ordering, the decision of the truck driver is based on the
direction from which he approaches the crossroad, and the soccer player’s decision to
shoot depends on his distance to the goal and the position of the goalkeeper. In this
chapter, we review several models for decision making in stochastic environments,
and discuss different algorithms to compute the best action for a specific situation.

Decision-making problems are centered around the decision maker, or agent. An
agent is anything that perceives its environment through sensors ands acts upon that
environment through actuators [Russell and Norvig, 2003]. This general definition
describes not only humans (with eyes as sensors and hands as actuators) and robotic
agents (with cameras as sensors and robotics arms as actuators), but also software
agents (with keyboard input as sensors and a graphical user interface as actuator).

In a sequential decision-making problem an agent repeatedly interacts with its en-
vironment and tries to optimize a performance measure based on rewards it receives.
It is difficult to determine the best action in each situation because a specific decision
can have a long-term effect and its particular outcome often depends on the future
actions that will be performed. Referring back to our previous examples, it is impos-
sible for the soccer player to reverse its decision to shoot after he has kicked the ball.
Furthermore, even when turning left is part of the shortest route to the truck driver’s
destination, taking a different direction and following a longer, more familiar, route

10 CHAPTER 2. A REVIEW OF MARKOV MODELS

might bring the truck driver quicker to his destination, when turning left brings him
into an unfamiliar part of town.

We assume the sequential decision-making problems considered in this thesis all
obey the Markov property. This implies that the current situation provides a complete
description of the history, and previous information is irrelevant for making a decision.
The woman’s wine choice, for example, does not depend on what she drank earlier in
the day, and the truck driver does not take into account the roads he crossed earlier for
his current decision. Furthermore, we assume that the decision-making agent is both
autonomous and rational. Autonomous means that the agent is capable of making
decisions on its own, and thus without the guidance of a user. Rational means that
the agent should select actions to maximize a given performance measure based on the
available information received from its sensors and its knowledge about the problem.

In this thesis we mainly deal with sequential decision-making problems involving
multiple agents, and address the question how the agents in a group can take the
right decision in a certain situation. As we describe in more detail in Section 2.3,
having multiple agents interact with the environment and, more importantly, with
each other, has severe consequences on the characteristics and the complexity of the
problem. We restrict our attention to cooperative multiagent systems in which the
agents have to work together in order to achieve a common goal, that is, optimize
the given performance measure. This differs from self-interested approaches [Shapley,
1953; Littman, 1994] in which each agent tries to maximize its own performance.

In this chapter we describe different models for sequential decision making and
algorithms for solving them. First, we review single-agent models in Section 2.2 and
then extend these to incorporate multiple agents in Section 2.3. We end with a
discussion in Section 2.4. As a running example we consider a multiagent system
consisting of a team of eleven soccer players. When considering single-agent models,
we take the perspective from a single agent and ignore the other agents.

2.2 Single-agent models

This section describes a framework for sequential decision-making problems involving
a single agent. First, we give some general characteristics of the model in Section 2.2.1,
followed by a formal description in Section 2.2.2. Next, two instances of this formal
model, a Markov decision process (MDP) and a partially observable MDP (POMDP),
are described in more detail in Section 2.2.3. Finally, we describe some existing tech-
niques to compute the best action for a specific situation in an MDP in Section 2.2.4.

2.2.1 Characteristics

As stated earlier, a sequential decision-making problem is a problem in which an
agent repeatedly interacts with its environment in order to optimize a performance
measure. Each interaction with the environment consists of several steps. First, an
agent makes observations, for example, through its sensors, about the current state

2.2. SINGLE-AGENT MODELS 11

agent

action a
observation o

reward r

environment

(a) Agent loop.

at−1 at

ot−1 ot

rt rt+1

st−1 st

t − 1 t

(b) Graphical model.

Figure 2.1: Two different representations of an agent interacting with its environment. (a)
depicts the dependencies between the agent and its environment (b) shows the
corresponding graphical model for two consecutive time steps.

of the environment. The state can be regarded as the collective information of the
environment relevant for the decision at a particular instance. Based on the current
state, the agent then determines an action and executes it. According to a stochastic
transition model which is based on the current state and the selected action, the
environment then changes to a new state. Furthermore, the environment provides
the agent feedback to evaluate the new situation. This feedback is often represented
as a scalar reward. After the agent has observed the new state it again selects an
action, and the sequence repeats itself.

Fig. 2.1(a) depicts the general structure of an agent interacting with its environ-
ment. Note that from the perspective of the agent this structure follows a functional
decomposition in three phases: sensing, thinking, and acting. This is therefore often
referred to as the sense-think-act, or perception-cognition-act, loop.

The observation of an agent might not be identical to the exact true state. This
can be the result of two different reasons. First, it can be the result of noise in
the agent’s sensors. For example, the same state might provide the agent different
observations at different time steps due to inaccurate or malfunctioning sensors. A
second cause is perceptual aliasing, the effect that different states result in the same
observation. For example, a soccer player might receive the same perception when it
observes one of the four corner posts. When this is the only information received by
the agent, it is not possible to infer in which of the four corners the agent is positioned.

It is the objective of the agent to select actions that optimize a performance mea-
sure specified in terms of the received rewards. A formal model describing the model
parameters of a sequential decision-making problem, including possible performance
measures, is given in the following section.

12 CHAPTER 2. A REVIEW OF MARKOV MODELS

2.2.2 Formal description

Many existing single-agent models for sequential decision making are derived from
a general model and are distinguished by assumptions about the parameters of the
general model. Next, we give an overview of the relevant model parameters for single-
agent systems and discuss some related issues. Most of the theory is adapted from
Puterman [1994]; Kaelbling et al. [1996]; Sutton and Barto [1998]. For simplicity, we
focus on discrete environments which have a finite number of states and actions.

Parameters

A finite, discrete sequential decision-making problem can be specified using the fol-
lowing model parameters:

• A discrete time step t = 0, 1, 2, 3,

• A finite set of environment states S. A state st ∈ S describes the state of the
world at time step t.

• A finite set of actions A. The action selected at time step t is denoted by at ∈ A.

• A finite set of observations Ω. An observation ot ∈ Ω provides the agent with
information about the current state st.

• A state transition function T : S×A×S → [0, 1] which gives the transition prob-
ability p(st|at−1, st−1) that the system moves to state st when the action at−1

is performed in state st−1. Since an action selected in a state possibly results in
different outcomes, the environment is called stochastic, or non-deterministic.
We do not consider deterministic environments in which every action has a
single unique effect.

• An observation function O : S × A × Ω → [0, 1] which defines the probability
p(ot|st, at−1) the agent perceives observation ot in state st when action at−1

was performed in the previous time step. In some cases the previous state st−1

is also incorporated in the observation function. The probability of receiving
observation ot is then defined as p(ot|st, at−1, st−1). Unless explicitly stated, we
ignore the previous state st−1 in the observation function.

• A reward function R : S × A → R which provides the agent with a reward
rt+1 = R(st, at) based on the action at taken in state st. The reward is assumed
deterministic and is always the same for a specific state-action pair. We do not
consider non-deterministic reward structures.

In the specifications of the transition function, the next state st+1 only depends
on the state st and the action at. In the more general case, the dynamics would be
defined in terms of the complete history

p(st+1|at, st, at−1, st−1, . . . , a0, s0), (2.1)

2.2. SINGLE-AGENT MODELS 13

for all possible values of the past events. With such a representation, however, it
quickly becomes intractable to store the probabilities for every possible trajectory.
A common assumption is therefore that the environment has the Markov property.
This implies that the state of the world at time t provides a complete description
of the history before time t. We can then ignore all information before time t and
simplify (2.1) to p(st+1|st, at). Fig. 2.1(b) shows a graphical model depicting the
dependencies between the variables in two consecutive time steps.

The environment is called stationary, or static, when the reward and transition
probabilities are independent of the time step t. The action executed by an agent
thus always has the same, possibly probabilistic, effect on the environment. An
environment is called non-stationary, or dynamic, when these probabilities change
over time. We focus on stationary transition functions. In our notation we therefore
sometimes omit the time step t superscript when referring to a state st, and use the
shorthand s′ for the next state st+1.

Performance measures

The goal of the agent is to select actions that optimize a performance measure related
to the received rewards. The most common measure is the expected return Rt, which
is a specific function based on the reward sequence rt, rt+1, rt+2, We discuss two
common definitions for the expected return. The first defines the return as the total,
cumulative rewards collected from time step t onward:

Rt = rt + rt+1 + rt+2 + rt+3 + . . . + rT =

T
∑

k=t

rk, (2.2)

in which T is the final time step. This measure applies to episodic tasks in which the
interaction with the environment is divided into episodes. After T steps, or when a
terminal state is reached, the episode ends and the system resets to a starting state.

In continuing tasks there are no terminal states and the system continues indefi-
nitely. Since in this case the sum in (2.2) is infinite, a standard approach is to discount
future rewards and weigh rewards in the near future more. Formally, the expected
discounted return is specified as

Rt = rt + γrt+1 + γ2rt+2 + . . . =
∞
∑

k=0

γkrt+k, (2.3)

where γ, 0 ≤ γ < 1, is the discount rate.

For γ < 1, rewards received in the near future are favored more valuable than
later received rewards. As γ decreases, this effect is more apparent; in the extreme
case γ = 0 the agent only tries to maximize the immediate received reward. Unless
stated otherwise, we consider discounted returns in the remainder of the thesis.

14 CHAPTER 2. A REVIEW OF MARKOV MODELS

Policies

An agent selects actions based on its policy, or strategy, π. A deterministic policy is a
function that maps the current state to a single action: π : S → A. A randomized, or
stochastic, policy is a function that maps the current state to a probability distribution
over all possible actions: π : S × A → [0, 1]. The probability of taking action at in
state st is denoted by p(at|st).

The objective of an agent is to select an action at each time step that maximizes
its performance measure. This corresponds to computing an optimal policy π∗ which
for every state returns the action that is optimal, given that π∗ is also used to select
actions in the future. In Section 2.2.4, we review several existing techniques for
computing an optimal policy π∗.

Factorized representations

Until now, we used an explicit or extensional state representation in which a state is
defined as an element from the finite set S. However, in many cases it is more conve-
nient to describe a state in terms of a set of properties or features instead of enumerat-
ing all possible combinations explicitly [Boutilier et al., 1999; Guestrin et al., 2003].
In such an intentional representation the state is described via a set of m random
variables S = {S1, . . . , Sm}, where each si ∈ Si takes on a value from the domain Si.

1

The current state s ∈ S is defined as the cross-product of all individual features, or
factors, si: s = s1 × s2 × . . . × sm. For example, the state of a soccer player on the
field can be defined by three features: its x-position, y-position, and its orientation.

Such a representation is not only more descriptive, but also allows one to repre-
sent large problems compactly by using a factorized representation for the transition
function. In this representation the new value of a state variable only depends on a
subset of all state variables. A turn action performed by a soccer player, for example,
only changes its orientation and is therefore independent of its x and y-position.

A factorized state transition function can be represented compactly by a dynamic
Bayesian network (DBN) [Dean and Kanazawa, 1989; Jensen, 2001]. The transition
graph of a DBN, for a given action a, is a two-layered directed acyclic graph in which
the layers correspond to two consecutive time steps. The nodes in the first layer,
S = {S1, . . . , Sm}, represent the state variables related to a given time t, while the
nodes in the second layer, S′ = {S′

1, . . . , S
′
m}, represent the state variables related

to time t + 1. Directed arcs between the nodes indicate a probabilistic dependency
between the corresponding features. Parents(S′

i) denotes the variables on which
node S′

i depends. For simplicity, we assume that all arcs are diachronic, that is,
Parents(S′

i) ⊂ S, and therefore no dependencies exist between nodes in the same
time slice (synchronic arcs).

The value of a state variable s′i ∈ S′
i in time step t+1 is conditioned on the values

of its immediate parents. Each node Si is therefore associated with a conditional
probability distribution (CPD) Pa(S′

i|Parents(S′
i)) which specifies the probability of

1A vector of two or more variables is emphasized using a bold notation.

2.2. SINGLE-AGENT MODELS 15

S1 S′
1

S2 S′
2

S3 S′
3

R1

R2

t t + 1

Figure 2.2: An example dynamic Bayesian network. The circles in the network represent
state variables and the diamonds represent reward variables. The arcs denote
directed dependencies between the connected variables.

its new value for every possible combination of its parents’ values, given the action a.
The global transition probability function T is defined by

p(s′|s, a) =

m
∏

i=1

pa(s′i|s[Parents(S′
i)]) (2.4)

where s[Parents(S′
i)] represents the values of the variables in Parents(S′

i) for the
state s. This representation can be very compact since in many problems only a
small subset of all state variables influence the new value of a state. Furthermore,
the (in)dependencies can also be exploited by planning and decision-making algo-
rithms, resulting in additional computational savings [Jesse Hoey and Boutilier, 1999;
Schuurmans and Patrascu, 2002; Guestrin et al., 2003]. Note that actions are not di-
rectly included in the DBN, and a separate model exists for every action.

The reward function is modeled as a linear combination of local reward functions,
each depending on a subset of all state variables. When we define Ra

i : S → R as the
ith local reward function when performing action a, the global reward function R is
defined as

R(s, a) =

k(a)
∑

i=1

Ra
i (s[Scope[Ra

i]]), (2.5)

where k(a) is the number of local reward functions for action a and s[Scope[Ra
i] is

the assignment of the variables in s that are associated with Ra
i .

Fig. 2.2 shows an example DBN with a factorized transition and reward function.
In our soccer example, the depicted DBN might correspond to a movement command
in which the state variables s1 and s2 specify the position (x and y-position) of the
agent, and s3 specifies the position of the ball. The new position of the agent depends
both on the x and y-position of the previous state, while the new position of the ball

16 CHAPTER 2. A REVIEW OF MARKOV MODELS

is independent of these values. The reward function is also decomposed into two
independent functions; one is related to the position of the ball, while the other is
related to the agent position. The reward related to the ball position is, for instance,
only positive when the ball is inside the opponent goal and thus does not depend on
the position of the agent.

2.2.3 Existing Models

Next, we describe two models that are derived from the general model described in
Section 2.2.2.

Markov decision process (MDP)

A Markov decision process (MDP) [Puterman, 1994; Bertsekas, 2000] is a sequential
decision-making problem in which the current state is fully observable to the agent,
that is, the observation in time step t equals st. This model follows the general model
from Section 2.2.2 with the additional assumption that the set of observations equals
Ω = S and the only non-zero observation probability is p(ot = st|st, at−1) = 1.

Because the agent observes the current state without uncertainty and an MDP
obeys the Markov property, the agent can directly map its current observation ot = st

to a new action at = π(st). Such a policy is called a reactive or memoryless policy.

A factored MDP [Boutilier et al., 1999; Guestrin et al., 2003] is an MDP in which
the transition and reward function are factorized as described in Section 2.2.2.

Partially observable MDP (POMDP)

The general model in Section 2.2.2 is identical to a partially observable Markov de-
cision process (POMDP) [Lovejoy, 1991; Kaelbling et al., 1998]. Contrary to fully
observable domains, a received observation now only provides partial information
about the current state. A memoryless policy might lead to suboptimal behavior in
such settings since the received observations do not provide a full description of the
current state, and thus do not provide a Markovian signal to the agent. Observations
received in the past might provide additional information about the current state that
can improve the decision of the agent. For example, when the soccer player saw the
opponent goal to its left in its previous observation it should be able to derive in
which corner it is currently positioned. In order to take into account the information
of all previous observations, a common approach is to keep track of a belief state
[Dynkin, 1965; Kaelbling et al., 1998]. A belief state is a probability distribution over
all possible states and summarizes all information from the past. Using the known
transition and observation model, the belief state is updated after each observation
to compute the probability of the environment being in each state of the underlying
MDP. The agent makes its decisions based on this belief state. This is a much more
difficult problem than the fully observable case, since the agent has to find a mapping
from a continuous space of probability distributions (over states) to actions, instead

2.2. SINGLE-AGENT MODELS 17

of discrete states to actions. In the remainder of the thesis we only consider partially
observable domains briefly. We mainly focus on solution techniques that are able to
cope with the complexities related to the existence of multiple cooperative agents in
an environment. We will not deal with the additional complexities resulting from
the uncertainty in the observations, since these solution methods require completely
different techniques than in the fully observable case.

2.2.4 Solution techniques

In this section we discuss several solution techniques to compute an optimal policy π∗

for a given MDP. An optimal policy should for every possible situation return the
action that maximizes the performance measure. It is well-known that a stationary
and deterministic policy is sufficient for solving an MDP optimally [Howard, 1960;
Puterman, 1994]. We distinguish between model-based and model-free techniques.
Model-based techniques, also referred to as planning methods, require a complete
description of the model, while model-free techniques, also referred to as reinforcement
learning [Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998], only learn based on
the received observations and rewards.

Value iteration

Dynamic programming (DP) refers to a collection of algorithms that compute an
optimal policy given a complete description of the model as an MDP. Value iteration
[Puterman, 1994] is a model-based dynamic programming algorithm which specifies
the optimal policy in terms of a value function V π : S → R. A value function for a
policy π returns for every state an estimate of the expected discounted return when
actions are selected according to the policy π:

V π(s) = E
[

∞
∑

t=0

γtR(st, π(st))|s0 = s
]

, (2.6)

where the expectation operator E[·] averages over stochastic transitions and γ ∈ [0, 1]
is the discount factor. The value function can also be defined recursively, and is then
referred to as the Bellman equation [Bellman, 1957]:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))V π(s′). (2.7)

The expected return for a state s equals the sum of the immediate received reward and
the expected discounted return from the next state. Since transitions are stochastic,
the latter is the sum of the expected return for every state s′ multiplied with the
probability that s′ will be reached after performing the action according to π.

The optimal policy can be derived from the optimal value function V ∗ that solves
the so-called Bellman optimality equation,

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)
]

, (2.8)

18 CHAPTER 2. A REVIEW OF MARKOV MODELS

and maximizes the expected return for each state s. Solving this set of nonlinear equa-
tions simultaneously is cumbersome for large problems [Puterman, 1994]. Instead, we
can transform (2.8) into a recursive update, known as the Bellman backup:

Vk+1(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

P (s′|s, a)Vk(s′)
]

. (2.9)

For each iteration, the value function of every state s is updated one step further
into the future based on the current estimate. The concept of updating an estimate
based on the basis of other estimates is often referred to as bootstrapping. The value
function is updated until the difference between two iterations, Vk and Vk+1, is less
than a small threshold. For an arbitrary V0, the sequence {Vk} is known to converge
to V ∗ [Puterman, 1994]. The optimal policy is then derived using:

π∗(s) = arg max
a∈A

[

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)
]

. (2.10)

When using value iteration, each iteration involves a complete sweep over the
state space. For larger problems, this might involve many irrelevant updates which
do not change the value of a state. An alternative is therefore to update the states
using asynchronous DP algorithms that backup the states in an arbitrary order, for
example, based on the expected change in the value function. The algorithm will still
converge to the optimal policy [Bertsekas and Tsitsiklis, 1989] as long as every state
is eventually updated.

A different DP algorithm, which we will not review in detail, is policy iteration
[Howard, 1960; Bertsekas and Tsitsiklis, 1996] that learns the policy directly. This
algorithm starts with an initial random policy π, and iteratively updates the policy
by first computing the associated value function V π by solving the linear system (2.7),
and then improving the policy based on V π using an update step as in (2.10).

Q-learning

This thesis is mostly concerned with model-free methods in which the agent has no
access to the transition and reward model. Specifically, we focus on Q-learning, which
is a widely used reinforcement-learning technique [Watkins, 1989; Sutton and Barto,
1998]. The agent represents its policy π in terms of Q-functions, or action-value
functions, which represent the expected future discounted reward for a state s when
selecting a specific action a, and then following the specific policy π. The objective
of the agent is to learn the optimal Q-function, Q∗(s, a), which satisfies the Bellman
optimality equation,

Q∗(s, a) = R(s, a) + γ
∑

s′

p(s′|s, a)max
a′

Q∗(s′, a′). (2.11)

Note that this equation is identical to (2.8) if we define V (s) = maxa∈A Q(s, a).

2.3. MULTIAGENT MODELS 19

When the transition probabilities p(s′|s, a) are not available, it is not possible to
apply an iteration step as (2.9) to update the Q-values. Instead, Q-learning starts with
an initial estimate for each state-action pair. Each time an action a is taken in state s,
reward R(s, a) is received, and next state s′ is observed, the corresponding Q-value
Q(s, a) is updated with a combination of its current value and the temporal-difference
error. The latter is the difference between the current estimate Q(s, a) and the ex-
pected discounted return based on the experienced sample R(s, a)+γ maxa′ Q(s′, a′).
The update is defined as

Q(s, a) := Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′) − Q(s, a)], (2.12)

where α ∈ [0, 1] is an appropriate learning rate which controls the contribution of the
new experience to the current estimate. The idea is that each experienced sample
brings the current estimate Q(s, a) closer to the optimal value Q∗(s, a).

Contrary to value iteration, Q-learning performs updates based on on-line expe-
riences, which depend on the action choices of the agent. In order to select an action
at a particular time step the agent uses an exploration strategy. The most com-
monly used strategy is ǫ-greedy which selects the greedy action, arg maxa∈A Q(s, a),
with high probability, and, occasionally, with a small probability ǫ, selects an action
uniformly at random. This ensures that all actions, and their effects, are experi-
enced. When every state-action pair is associated with a unique Q-value and every
action is sampled infinitely often, for example, using the ǫ-greedy action selection
method, iteratively applying (2.12) converges in the limit to the optimal Q∗(s, a) val-
ues [Watkins and Dayan, 1992; Tsitsiklis, 1994]. Given Q∗, the optimal policy π∗ is
simply obtained by selecting the greedy action for every state s.

An alternative model-free approach to learn the optimal policy π∗ is to first esti-
mate the model based on the experienced state transitions, and then solve this model
using standard DP techniques like value iteration. More common, however, is to com-
bine the two approaches and perform updates based on real experienced samples and
samples simulated from a, continuously changing, estimated model [Sutton and Barto,
1990; Barto et al., 1995].

2.3 Multiagent models

Contrary to a single-agent system in which only one agent interacts with the environ-
ment, a multiagent system (MAS) consists of multiple agents which are all executing
actions and influence their surroundings [Sycara, 1998; Weiss, 1999; Vlassis, 2003].
Each agent receives observations and selects actions individually, but it is the result-
ing joint action which influences the environment and generates the reward for the
agents. This has severe consequences on the characteristics and the complexity of the
problem. Fig. 2.3(a) shows a graphical description, similar to Fig. 2.1(a), of different
agents interacting with their environment.

We describe the general characteristics for sequential decision-making problems
with multiple agents in Section 2.3.1. We mainly focus on cooperative MASs in

20 CHAPTER 2. A REVIEW OF MARKOV MODELS

agent i

agent j

action ai

action aj

obs. oi

obs. oj

rew. ri

rew. rj

environment

(a) Agent loop.

at−1
i at

i

ot−1
i ot

i

rt
i rt+1

i

st−1 st

t − 1 t

(b) Graphical model.

Figure 2.3: Two representations of multiple agents interacting with their environment.
Fig. (a) depicts the dependencies between two agents and their environment.
Fig. (b) shows the related graphical model for two consecutive time steps.

which the agents have to optimize a shared performance measure. This is followed by
a general model description in Section 2.3.2. We give an overview of several existing
multiagent models in Section 2.3.3, and describe existing model-based and model-free
solution techniques in Section 2.3.4.

2.3.1 Characteristics

A MAS consists of multiple agents interacting with their environment. A result-
ing complication is the growth in both the action and the state space when a new
agent is added to the system. Since the total number of joint actions is defined as
the cross-product of the individual action sets, the action space scales exponentially
with the number of agents. Usually, the same holds for the state space since every
agent is at least related to one state feature. Next, we list several other fundamental
characteristics of a MAS in more detail.

Dynamic environment

In most single-agent systems the environment is assumed to be static, which means
that the transition and reward function do not depend on the time step t. However,
when other agents are part of the environment the new state and received reward also
depend on the actions selected by the other agents. As a consequence, the environment
becomes dynamic from the perspective of a single agent. For example, when a player
on a soccer field passes the ball to a teammate, the outcome depends on the behavior
of the receiving agent. The receiving agent might anticipate the pass, but it is also

2.3. MULTIAGENT MODELS 21

possible that it ignores it. The behavior of the other agent can change over time,
resulting in a dynamic environment.

Dynamic environments are more difficult to handle than static environments since
the same action can have different effects based on factors an agent is not able to
influence. This might lead to oscillated behavior [Claus and Boutilier, 1998], and
therefore requires solution techniques in which the agents actively synchronize and
coordinate their behavior.

Homogeneous and heterogeneous agents

Agents in a MAS are either homogeneous or heterogeneous. Homogeneous agents are
constructed in the same way and have identical capabilities. Examples are hardware
robots manufactured by the same factory process or copies of software agents. On the
other hand, heterogeneous agents have different designs and different capabilities. For
example, two soccer robots are heterogeneous when they have different sensors to de-
termine their position or are able to traverse the field with different velocities. Agents
with the same underlying hardware/software structure but with different behaviors
are often also called heterogeneous. We mainly consider homogeneous agents.

Control

The control of a MAS is decentralized. Each agent selects an action individually,
but the system is affected by the joint action, that is, the combination of all selected
actions. In order to reach a coordinated joint decision, each agent has to use the
available knowledge about the other agents to reason about their possible action
choices. Specific coordination mechanisms can be applied to ensure that the agents
select their individual actions in agreement with those of the other agents [Boutilier,
1996; Vlassis, 2003]. Possible examples, which are discussed in more detail later, are
to assume that specific knowledge is shared by all agents or to use communication.

Knowledge

Knowledge is the information an agent has about the world and the task it has to
solve. An agent accumulates this information from different sources, and uses it to
select its actions. First of all, the agent has specific internal knowledge, for example,
it knows the actions it is able to perform or has information about the transition and
reward functions. An agent can also have prior knowledge about the preferences of
the other agents, as we describe in more detail in Section 2.3.4. Furthermore, an agent
observes information about the current world state through its sensors, or receives
communication messages from the other agents. The messages, for example, contain
information about the current state or guide the action in selecting an action. We
will treat both information sources later on in more detail.

In general, knowledge in a MAS is distributed, and every agent bases its decision
on different information about the problem. Each agent, for example, has a different

22 CHAPTER 2. A REVIEW OF MARKOV MODELS

interpretation of the current world state. As a consequence, an agent has to reason
about the knowledge state of the other agents when choosing its own action, that is,
each agent has to reason interactively. An important notion in this context is common
knowledge [Osborne and Rubinstein, 1994], which is knowledge that is shared by the
agents. More formally, common knowledge is information that is available to all
members of a group, and every member knows that all members in the group know
it. Furthermore, it is also known by all members that it is common knowledge. The
latter is a recursive definition.

Observability

Observability is the degree to which agents, either individually or as a team, identify
the current world state. Observability is an important aspect of a MAS since the
decision of an agent is based on its current interpretation of the world state. Since the
agents in a MAS are often spatially distributed, the observations are also distributed.
This can lead to situations in which an agent is not able to observe the complete state
and has to base its decision on incomplete information.

Pynadath and Tambe [2002] give the following four models for observability:

• Individual observability. Every agent observes the complete unique world state.
This corresponds to full observability in single-agent systems.

• Collective observability. The combined observations of all agents uniquely iden-
tify the world state. Each agent observes a part of the state, and when the
information of all agents is combined the complete unique world state is known.

• Collective partial observability. There are no assumptions on the observations.
Each agent observes part of the full state information but there are no assump-
tions about the combined observations of the agents.

• Non-observability. The agents receive no feedback from the world.

Communication

Communication can help a team of agents to improve their performance. In the ex-
treme case, the agents are able to communicate instantaneously to all agents for free
and there are no limitations in the number of messages. Then, it is in principle possi-
ble to solve the system as one big single agent: one agent collects all the observations,
solves the complete problem using single-agent learning techniques, and informs each
agent which action it should take. Note that having access to noiseless, free, and
instantaneous communication is much related to the collective observability discussed
earlier. In both cases, each agent obtains perfect knowledge about the current situ-
ation, and therefore is able to model the complete problem by itself, and select the
action corresponding to its own identity.

2.3. MULTIAGENT MODELS 23

Normally, however, communication is restricted. For example, communication
might not be available because of failing connections or spatial constraints. Further-
more, communication is often delayed. In order to model the drawbacks of commu-
nication, the sending of a message is sometimes associated with a cost, for example,
in the form of a negative reward [Pynadath and Tambe, 2002].

Agents either broadcast a message to all agents at once, or directly send a message
to a specific agent using direct communication. Irrespective of the used method, a
communication message can be categorized in different communicative acts, or speech
acts [Searle, 1969]. Communicative acts are communication primitives which have
the characteristics of actions since they affect the knowledge of the receiving agent as
standard actions affect the environment. Some of the most common communication
acts are messages that inform an agent about the current world state, either as a
direct observation or a summary of the previous observations of the sending agent,
query for specific information, or direct another agent to perform a certain action,
but many more exist.

2.3.2 Formal description

Next, we give a general model description for a MAS. Most model parameters extend
the parameters for single-agent systems from Section 2.2.2. We also describe possible
performance measures for such models, and alternative factorized representations.

Parameters

A MAS can be described using the following model parameters:

• A discrete time step t = 0, 1, 2, 3,

• A group of n agents A = {A1, A2, . . . , An}.

• A finite set of environment states S. A state st ∈ S describes the state of the
world at time step t.

• A finite set of actions Ai for every agent i. The action selected by agent i, Ai,
at time step t is denoted by at

i ∈ Ai. The joint action a ∈ A = A1 × . . . × An

is the vector of all individual actions.

• A finite set of observations Ωi for every agent i. An observation ot
i ∈ Ωi provides

agent i with information about the current state st.

• A state transition function T : S × A × S → [0, 1] which gives the transition
probability p(st|at−1, st−1) that the system moves to state st when the joint
action at−1 is performed in state st−1.

• An observation function O : S × A × Ω1 × . . . × Ωn → [0, 1] which defines the
probability p(ot

1, . . . , o
t
n|st,at−1) that the observations ot

1, . . . , ot
n are observed

24 CHAPTER 2. A REVIEW OF MARKOV MODELS

by the agents 1, . . . , n in state st after joint action at−1 is performed. When the
previous state is also incorporated in the observation function, the probability
is defined as p(ot|, st,at−1, st−1). Unless otherwise stated, we use observation
functions that depend on the current state and the performed action only.

• A reward function Ri : S × A → R which provides agent i with a reward
rt+1
i ∈ Ri(s

t,at) based on the joint action at taken in state st. The global
reward R(st,at) =

∑n
i=1 Ri(s

t,at) is the sum of all individual rewards received
by the n agents. Depending on the model, the agents either have access to their
part of the reward, Ri, or to the global reward R.

These parameters are very similar to the ones in the single-agent case. However,
difficulties arise due to the decentralized nature of the problem. Each agent receives
observations and selects actions individually, but it is the resulting joint action that
influences the environment and generates the reward. This is depicted in the graphical
model in Fig. 2.3(b) which shows the dependencies between the variables in two
consecutive time steps.

Performance measures

Just as in a single-agent model, different performance measures can be constructed
based on the received rewards. Our focus is on cooperative systems in which the
agents try to maximize the expected discounted reward, exactly as in (2.3). For a
MAS, this equation depends on the sum of the local received rewards. Since they
depend on the selected joint action, the agents have to coordinate their actions.

In this thesis, we assume each agent receives an individual reward. Many other
multiagent models assume that the agents do not receive an individual reward, but
rather that the same (global) reward is communicated to all agents [Boutilier, 1996;
Bernstein et al., 2002; Pynadath and Tambe, 2002]. In this setting, a centralized
system computes the reward based on the performed joint action and distributes this
value among all agents. Using this representation, it is not possible to deduce the
performance of an individual agent. For example, the positive reward resulting from
the action of one agent can be canceled out by the action of another agent performing
a suboptimal action. The combined reward might then be zero and does not provide
any feedback to the agents. Furthermore, it is shown that using local rewards for
solving distributed, cooperative, multiagent reinforcement-learning problems, reduces
the number of examples necessary for learning [Bagnell and Ng, 2006].

Policies

In a MAS, each agent selects an action based on its individual policy πi which, just as
in the single-agent case, is a mapping from the current state to an action: πi : S → Ai.
The joint policy π = (π1, . . . , πn) is the vector of all individual policies.

2.3. MULTIAGENT MODELS 25

S1 S′
1

S2 S′
2

Sb S′
b

R1

R2

t t + 1

A1

A2

Figure 2.4: Example dynamic decision network for two consecutive time steps. States are
represented by circles, actions by squares, and rewards by diamonds. Arcs
define the directed dependencies.

Factorized representation

In many situations an agent has to coordinate its actions with a few other agents
only, and acts independently with respect to the rest of the agents. On a soccer field,
for example, the goalkeeper and the forward do not have to coordinate their actions.
These dependencies can be used to factorize the transition and reward function in
the same manner as the single-agent systems in Section 2.2.2. In the multiagent
case, a state variable usually represents a feature of a specific agent, for example, its
position, and the factorized transition function defines the probabilities for the, often
independent, agent transitions.

Because the number of joint actions grows exponentially with the number of
agents, it is not possible to store a separate network for each possible action. However,
we can use a dynamic decision network (DDN) [Dean and Kanazawa, 1989; Guestrin,
2003], which is an extension of a DBN that also incorporates the actions of the agents
in the network. In a DDN, the parents of a node S′

i consist of both state and ac-
tion variables, that is, Parents(S′

i) ⊆ {A,S}, and the global transition probability
distribution T is defined by

p(s′|s,a) =

m
∏

i=1

p(s′i|s[Parents(S′
i)],a[Parents(S′

i)]), (2.13)

where m is the number of defined state variables, s[Parents(S′
i)] represents the values

of the variables in Parents(S′
i) for state s, and a[Parents(S′

i)] represents the values of
the action variables. Note that the number of agents n does not have to be the same as
the number of state variables m. Although it is possible that each agent is associated

26 CHAPTER 2. A REVIEW OF MARKOV MODELS

with one single state variable, in general, this is not the case, and it depends on the
specific problem under study which variables are related to which agents. Because
each agent only depends on a subset of all state variables, a consequence of this
representation is that an agent only has to observe the state variables on which it
depends in order to determine its action.

Fig. 2.4 shows an example DDN. In this figure, S1 and S2, for instance, both
represent the position of an agent on a soccer field, and Sb represents the position of
the ball. From the dependencies in the figure, we can derive that the new position
of an agent only depends on its previous position and its individual action, while the
new ball position is specified in terms of its previous position and the actions of the
two agents. The latter models the situation in which one of the agents kicks the ball.

The global reward is factorized and defined as the sum of all individual rewards.
The individual reward Ri(s,a) = Ri(s[Parents(S

′
i)],a[Parents(S′

i)]) obtained by an
agent i depends on a subset of all state and action variables. In the Fig. 2.4 example,
an agent receives a local reward depending on its own position and that of the ball.

2.3.3 Existing Models

Next, we describe several multiagent models which are derived from the general model
described in Section 2.3.2. Just as with the single-agent models, the distinction be-
tween the different models are categorized based on assumptions about the model
parameters. We first describe several models in which the agents have full observabil-
ity, and thereafter models in which the agents only receive partial information about
the current state.

Multiagent MDP (MMDP)

A straightforward extension of an MDP to multiple agents is a multiagent Markov
decision process (MMDP) [Boutilier, 1996]. This model follows the general model from
Section 2.3.2 with two additional assumptions. First, each agent receives the same
global reward. Secondly, the system has individual observability, that is, each agent
observes the complete state st in time step t. More formally, the set of observations
equals Ωi = S for every agent i, and the only non-zero observation probability is
p(ot

i = st|st,at−1) = 1.

Collaborative multiagent MDP

A collaborative multiagent MDP (collaborative MMDP) [Guestrin, 2003] exploits the
fact that in a MAS many agents act independently, and uses the known dependencies
between the agents to create a factorized representation of the transition and reward
function as described in Section 2.3.2. A consequence of this representation is that
each agent only has to observe the state variables on which it depends. The goalkeeper,
for example, can ignore the positions of the players which are positioned on the other
side of the playing field. This model can be regarded as a factorized version of a

2.3. MULTIAGENT MODELS 27

intercept defend
intercept 0, 0 1, 1

defend 1, 1 0, 0

Figure 2.5: An example strategic game.

MMDP with the additional difference that each agent receives an individual reward
instead of a shared global reward. The goal of the agents is again to maximize a
performance measure based on the global rewards. However, an important difference
is that in a collaborative MMDP the agents only receive individual rewards, and they
are thus not able to observe this value directly.

Stochastic games

The described model in Section 2.3.2 also bears resemblance to a stochastic game
[Shapley, 1953]. This model is an extension of a strategic game, also called a matrix
game or game in normal form, to multiple states [Osborne and Rubinstein, 1994]. A
strategic game is a game in which all involved agents have to select an action ai, and
the resulting joint action a, also called outcome in this context, provides each player i
an individual payoff Ri(a). Although the payoff structure is common knowledge,
the agents do not know which actions the other agents will play and therefore have
to reason about the other agent’s strategies. There are different types of payoff
structures. In zero-sum, or strictly competitive, games, one agent receives the opposite
payoff of the other agent, and the sum thus equals zero. In identical payoff games, the
reward received by all agents is identical. Finally, in general-sum games the individual
payoffs can be arbitrary.

Fig. 2.5 depicts a graphical representation of such a strategic game between two
agents using a payoff matrix. The rows and columns correspond to the possible actions
of respectively the first and second agent, while the entries contain the returned payoff
for the corresponding joint action. In this example, each agent chooses between two
actions, either intercept the ball or move to a defending position, without knowing
the choice of the other agent. The agents have to coordinate their actions in order
to maximize their payoff. Both agents receive a payoff of 1 when the two selected
actions of the agents differ, and a payoff of 0 when the actions are the same.

Stochastic games extend strategic games to multiple states by associating each
state of the problem with a strategic game. In a state, each agent selects an individual
action and the resulting joint action not only provides the agents with a payoff but
also causes a transition to a next state in which a different strategic game applies.

Although there are many similarities between stochastic games and the general
model described in Section 2.3.2, there are also some differences. First of all, a stochas-
tic game assumes full observability of the current state and complete knowledge of
the reward function. Furthermore, the agents in a stochastic game try to maximize
their individual reward. For a completely observable identical payoff stochastic game

28 CHAPTER 2. A REVIEW OF MARKOV MODELS

(IPSG) [Peshkin et al., 2000], in essence identical to an MMDP, this goal coincides
with the objective of cooperative systems to optimize the sum of the received pay-
offs. For zero-sum and general-sum games, however, the goals differ, and in these
cases different solution techniques are required. We briefly address such techniques
in Section 2.3.4.

Decentralized POMDP (DEC-POMDP)

The multiagent extension of the single-agent POMDP model with collective par-
tial observability is a decentralized POMDP (DEC-POMDP) [Bernstein et al., 2002].
This model is almost identical to the general model given in Section 2.3.2. It as-
sumes that the observations of the agents are uncertain and given by the probability
p(ot|, st,at−1, st−1) which depends on the previous state, current state, and previ-
ous performed joint action. Furthermore, it assumes each agent receives a shared
reward. This framework is similar to a multiagent team decision process (MTDP)
[Pynadath and Tambe, 2002]. The only difference is that the latter ignores the pre-
vious state in the observation function and assumes a factorized state representation.
When the agents receive individual rewards and are self-interested, that is, the agents
try to maximize their own received rewards, the framework is referred to as a partially
observable stochastic game (POSG) [Hansen et al., 2004].

The complexity of solving a DEC-POMDP falls in the complexity class NEXP-
complete [Bernstein et al., 2002], and therefore several simplified models exist that
make additional assumptions about the parameters of the model. A factored DEC-
POMDP [Becker et al., 2003] factors the global state into different features, S =
S1× . . .×Sm. A common approach is to assume that each Si corresponds to the local
state of an agent, and make assumptions about the relation between the different
features. In some cases, the model incorporates additional external state features So

that all agents observe but are not able to influence [Becker et al., 2004]. The current
time step, for example, is a commonly used external feature.

Becker et al. [2003]; Goldman and Zilberstein [2004] describe several additional
extensions. In a (factored) transition-independent DEC-POMDP the transitions of
the different agents are independent, and the action of an agent never influences
the state of another agent. More formally, for every agent i holds p(s′i|a, s, s′−i) =
p(s′i|ai, si) where s′−i represent the state variables of all agents except agent i. Fur-
thermore, in an observation-independent DEC-POMDP the observation function is
decomposed in individual observation functions Oi : Si × Ωi → [0, 1] such that the
observation an agent receives only relates to its own local state: p(o′i|s′,a, s,o′

−i) =
p(o′i|s′i, ai, si) and O = O1 × . . .×On. In this case, the agents are not able to observe
each other. In a fully-observable DEC-POMDP, which is identical to an MMDP, each
agent can uniquely determine the global state s′ from its local observation o′i, that is,
p(o′ = s′|s′,a, s) is the only non-zero probability. Finally, in a jointly fully-observable
DEC-POMDP collective observability is assumed, that is, the combined observations
of all agents uniquely determine the current state. The latter is also referred to as a
decentralized MDP (DEC-MDP) [Bernstein et al., 2000].

2.3. MULTIAGENT MODELS 29

2.3.4 Solution techniques

In this section, we discuss several existing solution techniques to compute a policy π
for the agents in a MAS. We concentrate on the collaborative MMDP model since
it is used as a basis in the subsequent chapters. Our main focus is on decomposing
a problem with multiple agents into smaller subproblems that can be solved locally
and this model uses a factorized representation of the reward and transition function,
and provides the agents with individual rewards. This allows us to fully decompose
the problem. Many other models provide each agent the same global reward which
makes it impossible to determine the local contribution of an agent.

We first describe model-based solution techniques, and show different approaches
to solve the resulting coordination problem. After that, we concentrate on existing
distributed model-free reinforcement-learning techniques, which will be used more
extensively in the remainder of the thesis.

Coordination problem

In principle, it is possible to regard a MAS as one big single agent, and apply standard
MDP solution techniques to compute the optimal policy for the agents. Boutilier
[1996], for example, assumes each agent has access to the complete transition and
reward functions, and is able to compute the optimal joint action for every state
using the single-agent solution techniques described in Section 2.2.4. However, since
actions are taken individually by the agents, an important problem is to ensure,
without using communication, that the selected joint action results in a good joint
policy. In general, there are a number of distinct optimal policies for an MDP and
even when each agent selects a potentially individually optimal (PIO) action, that
is, an individual action which is part of an optimal joint action, the resulting joint
action does not have to be optimal. This problem of selecting individual actions that
correspond to an optimal joint action is referred to as the coordination problem.

In order to place the coordination problem in a broader context, we analyze it
from a game-theoretic point of view. The coordination problem can be modeled as a
strategic game (see Section 2.3.2) in which all agents share the same payoff function.
For this stateless problem, each agent independently has to select an action from its
action set. Each agent i receives a payoff Ri(a) based on the resulting joint action a.
The goal of the agents is to select, via their individual decisions, the most profitable
joint action. Fig. 2.5 shows an example coordination problem: all actions of the two
agents are PIO actions, but only two combinations result in an optimal joint action.

A fundamental solution concept in a strategic game is a Nash equilibrium [Nash,
1950; Osborne and Rubinstein, 1994]. It defines a joint action a∗ ∈ A with the
property that for every agent i holds Ri(a

∗
i ,a

∗
−i) ≥ Ri(ai,a

∗
−i) for all actions ai ∈ Ai,

where a−i is the joint action for all agents excluding agent i. Such an equilibrium
joint action is a steady state from which no agent can profitably deviate given the
actions of the other agents. For example, the strategic game in Fig. 2.5 has two Nash
equilibria corresponding to the situations where both agents select a different action.

30 CHAPTER 2. A REVIEW OF MARKOV MODELS

Another fundamental concept is Pareto optimality. An action a∗ is Pareto optimal
if there is no other joint action a for which Ri(a) ≥ Ri(a

∗) for all agents i and Rj(a) >
Rj(a

∗) for at least one agent j. That is, there is no other joint action that makes every
agent at least as well off and at least one agent strictly better off. There are many
examples of strategic games where a Pareto optimal solution is not a Nash equilibrium
and vice versa (for example, the prisoner’s dilemma [Osborne and Rubinstein, 1994]).
However, in identical payoff strategic games games such as the one in Fig. 2.5 each
Pareto optimal solution is also a Nash equilibrium by definition.

Formally, the coordination problem can be seen as the problem of selecting one
single Pareto optimal Nash equilibrium in a strategic game [Vlassis, 2003]. Boutilier
[1996] describes three different methods to ensure that the agents select a coordina-
tion joint action: communication, social conventions, and learning. Communication
allows each agent to inform the other agents of its action, restricting the choice of the
other agents to a simplified strategic game. If in the example of Fig. 2.5 the first agent
notifies the other agent that it will intercept the ball, the strategic game is simplified
to the first row which contains only one equilibrium. Secondly, social conventions are
constraints on the action choices of the agents. The agents beforehand agree upon a
priority ordering of agents and actions that is common knowledge among the agents.
When an action has to be selected, each agent derives which actions the agents with
a higher priority will perform, and selects its own action accordingly. A social con-
vention is a general, domain-independent method which always results in an optimal
joint action, and moreover, it can be implemented off-line: during execution the agents
do not have to explicitly coordinate their actions by communication. Assuming the
ordering ‘1 ≻ 2’ (meaning that agent 1 has priority over agent 2) and ‘intercept ≻
defend’ in our example, the second agent is able to derive from the social conventions
that the first agent will intercept the ball and therefore chooses the defend action.
Finally, learning methods can be applied to learn the behavior of the agents through
repeated interaction. Each agent, for example, can keep track of the distribution of
actions played by the other agents, and chooses its individual action according to these
statistics [Boutilier, 1996; Bowling and Veloso, 2002; Wang and Sandholm, 2003].

The described model-based approaches assume that all equilibria can be found, for
example, by applying single-agent reinforcement-learning techniques on the complete
state-action space, and coordination is the result of each individual agent selecting its
individual action based on the same equilibrium. However, the number of joint actions
grows exponentially with the number of agents, making it infeasible to determine all
equilibria in the case of many agents. This calls for approximation methods that first
reduce the size of the state-action space before solving the coordination problem.

Another complication arises when the agents do not have access to the complete
model description, and it is not even possible to compute all equilibria beforehand.
In these cases, model-free techniques have to be applied which automatically learn to
converge to an equilibrium. Next, we discuss some model-free reinforcement-learning
techniques to learn the behavior of multiple agents. We first describe an approach
which considers the complete state-action space, and then we describe techniques
which reduce the full state-action space by exploiting the structure of the problem.

2.3. MULTIAGENT MODELS 31

MDP learners

As stated earlier, a collaborative MMDP can be regarded as one large single agent
in which each joint action is represented as a single action. It is then possible to
apply a model-free reinforcement-learning technique like Q-learning, described in Sec-
tion 2.2.4, to learn optimal Q-values for the joint actions using standard single-agent
Q-learning, that is, by iteratively applying (2.12). When a specific Q-value is stored
for every state and joint action combination, this approach eventually results in an
optimal joint policy.

In this MDP learners approach either a central controller models the complete
MDP and communicates to each agent its individual action, or each agent models the
complete MDP separately and selects the individual action that corresponds to its
own identity. In the latter case, the agents do not need to communicate but they have
to be able to observe the executed joint action and the received individual rewards.
However, the distributed nature of the problem requires the agents to explore at the
same time. This problem can be solved by using the same random number generator
(and the same seed) for all agents [Vlassis, 2003].

Although this approach leads to the optimal solution, it is infeasible for problems
with many agents for several reasons. In the first place, it is intractable to model
the complete joint action space, which is exponential in the number of agents. For
example, a problem with 7 agents, each able to perform 6 actions, results in almost
280, 000 Q-values per state. Secondly, the agents might not have access to the needed
information for the update because they are not able to observe the state, actions
and reward of all other agents. Finally, it takes many time steps to explore all joint
actions for every state. This results in slow convergence to the optimal joint action.

Independent Q-learning

The MDP learners approach assumes that all agents depend on each other agent in
every state, that is, in every situation all actions in the joint action influence the
payoff received by an individual agent. However, in many situations an agent acts
independently with respect to the other agents, and the payoff an agent receives
only depends on a subset of all actions. At the other extreme, we can therefore
assume that all agents act independently, and have each agent ignore the actions
and rewards of the other agents [Claus and Boutilier, 1998]. In this independent
learners (IL) approach, each agent stores and updates an individual table Qi and the
global Q-function is defined as a linear combination of all individual contributions,
Q(s,a) =

∑n

i=1 Qi(s, ai). Each local Q-function is updated completely independent
of the other Q-functions using

Qi(s, ai) := Qi(s, ai) + α[Ri(s,a) + γ max
a′

i

Qi(s
′, a′

i) − Qi(s, ai)]. (2.14)

This approach results in big storage and computational savings in the action space.
For example, with 7 agents and 6 actions per agent only 42 Q-values are stored per

32 CHAPTER 2. A REVIEW OF MARKOV MODELS

state, instead of 280, 000 in the MDP learners approach. However, the standard
convergence proof for Q-learning does not hold anymore: because the actions of the
other agents are ignored in the representation of the Q-functions, and these agents
also change their behavior while learning, the system becomes non-stationary from
the perspective of an individual agent, possibly leading to oscillations. Despite the
lack of guaranteed convergence, this method has been applied successfully in multiple
cases [Tan, 1993; Sen et al., 1994].

Another approach in which the agents learn independently to optimize a shared
performance measure, is the collective intelligence (COIN) framework [Wolpert et al.,
1999]. In this work, the agents optimize private utility functions which also increase
the global utility. The agents update their local utility function using the wonderful
life utility, which resembles the difference in received reward when an agent takes part
in a joint action or does not.

Distributed value functions

In many problems, it is not the case that either all or none of the agents depend
on each other. Instead, each agent has to coordinate its actions with a few other
agents only, and acts independently with respect to the rest of the agents. The
distributed value functions (DVF) approach [Schneider et al., 1999] takes advantage
of such situations by only taking into account the actual dependencies between the
agents. These dependencies are fixed beforehand and depend on the problem.

Each agent i maintains an individual local Q-function, Qi(si, ai), based on its
individual action and updates it by incorporating the Q-functions, representing the
estimated future return, of its neighboring agents Γ(i). A weight function f(i, j)
determines how much the Q-value of an agent j contributes to the update of the
Q-value of agent i. This function defines a graph structure of agent dependencies, in
which an edge is added between agents i and j if the corresponding function f(i, j)
is non-zero. The update looks as follows:

Qi(si, ai) := (2.15)

(1 − α)Qi(si, ai) + α[Ri(s,a) + γ
∑

j∈{i∪Γ(i)}

f(i, j)max
a′

j

Qj(s
′, a′

j)].

A local Q-function of an agent i is thus updated based on its old value and a linear
combination of the Q-values of the agents on which agent i depends. Note that
f(i, i) is also defined and specifies the agent’s contribution to the current estimate. A
common approach is to weigh each neighboring function equally, and divide each Q-
function of an agent i proportionally over its neighbors and itself. The function f(i, j)
then equals 1/(1 + |Γ(j)|) when i and j depend on each other, and zero otherwise.

2.4. DISCUSSION 33

2.4 Discussion

In this chapter we provided an overview of different single- and multiagent Markov
models, which represent sequential decision-making problems involving respectively
the interaction of one or multiple agents with the environment. For both types of
models we gave their characteristics and a general, formal, model description. Fur-
thermore, we described several existing models from literature, which are categorized
based on the parameters of the general model. Finally, we described several tech-
niques to optimize the performance measure, both in the case that the agents have
access to the model description or when this model is unavailable.

As described in this chapter, extending a single-agent system to multiple agents
introduces many complexities. The main complications arise as a result of the ex-
ponential growth in both the representation of the action and state space, and the
distributed nature of the problem: observations, control, and knowledge are all dis-
tributed. The large body of literature available about this subject studies multiagent
problems from different perspectives. This results in different models and solution
techniques, some of which are discussed in this chapter, based on the assumptions
about the specific parameters of the model.

In the remainder of this thesis we concentrate on solution techniques to coordi-
nate and learn the behavior of the agents in a multiagent system. Our focus is on
distributed, scalable techniques to coordinate and learn the behavior of a large group
of agents when the model of the environment is unavailable. Contrary to many other
solution techniques, we thus do not assume that the agents have access to a complete
model of the environment, but have to learn how to coordinate through repeated in-
teraction with the environment. On the other hand, we do assume that each agent is
able to fully observe the state variables needed for their decision. The main idea is to
exploit the relevant dependencies in the problem, which makes it possible to solve the
global problem as a sum of local problems. Therefore, we focus on problems in which
the agents are only allowed to operate locally, that is, the agents observe local states,
receive local rewards, and are only able to communicate with ‘nearby’ agents. The
main question we address is how the agents can coordinate or learn their contribution
to the global solution based on their local interaction with the environment.

3

Multiagent Coordination

This chapter focuses on coordinating the behavior of a group of cooperative agents.
Specifically, we investigate problems in which the agents have to decide on a joint
action, which results from their individual decisions, that maximizes a given payoff
function. This payoff function is specified as a sum of local terms using a coordination
graph [Guestrin et al., 2002a]. We describe two solutions to the coordination problem
which are used as building blocks for the learning algorithms described in the sub-
sequent chapters. We first review the variable elimination algorithm [Guestrin et al.,
2002a]. This method always produces an optimal joint action but scales exponentially
in the induced width of the graph. Our contribution is the max-plus algorithm, a pay-
off propagation algorithm that can be regarded as the decision-making analogue of
belief propagation in Bayesian networks [Kok and Vlassis, 2005, 2006]. This method
serves as a fast approximate alternative to the exact variable elimination algorithm.

3.1 Introduction

The study on multiagent systems (MAS) focuses on systems in which intelligent agents
interact with each other [Sycara, 1998; Lesser, 1999; Vlassis, 2003]. Since all agents in
a multiagent system can potentially influence each other, it is important to ensure that
the actions selected by the individual agents result in optimal decisions for the group
as a whole. As stated in Section 2.3.1, making a coordinated decision is complicated
by different factors. An agent, for example, is often not aware of the intentions of the
other agents, or is uncertain about the outcome of its actions. In this chapter, we
ignore many of these difficulties and investigate a stateless problem in which the goal
of the agents is to select a joint action that optimizes a given payoff function.

The main difficulty of the coordination problem addressed in this chapter is that
each agent selects an action individually, but that the outcome is based on the actions
selected by all agents. Fortunately, in many problems the action of one agent does not
depend on the actions of all other agents, but only on a small subset. For example,
in many real-world domains only agents which are spatially close have to coordinate
their actions, and agents which are positioned far away from each other can act
independently. In such situations, we are to able to represent the payoff function
using a coordination graph (CG) [Guestrin et al., 2002a]. This model decomposes a
global coordination problem into a combination of simpler problems. We will use this

36 CHAPTER 3. MULTIAGENT COORDINATION

framework extensively in the remainder of the thesis. In a CG each node represents an
agent, and an edge between agents indicates a local coordination dependency. Each
dependency corresponds to a local function that assigns a specific value to every action
combination of the involved agents. The global function equals the sum of all local
functions. In order to compute the joint action that maximizes the global function
the variable elimination (VE) algorithm can be applied [Guestrin et al., 2002a]. This
algorithm assumes the agents that depend on each other are allowed to communicate
for free, and operates by iteratively eliminating the agents one by one after performing
a local maximization step. This results in optimal behavior for the group, but its
worst-case time complexity is exponential in the number of agents.

As an alternative to VE, we present a ‘payoff propagation’ algorithm, often referred
to as the max-plus algorithm, that finds an approximately maximizing joint action for
a CG [Kok and Vlassis, 2005]. Our algorithm exploits the fact that there is a direct
duality between computing the maximum a posteriori configuration in a probabilistic
graphical model and finding the optimal joint action in a CG; in both cases we are
optimizing over a function that is decomposed in local terms. This allows message-
passing algorithms that have been developed for inference in probabilistic graphical
models, to be directly applicable for action selection in CGs. The max-plus algorithm
is a popular method of that family. We empirically demonstrate that this method,
contrary to VE, scales to large groups of agents with many dependencies.

The problem of finding the maximizing joint action in a fixed CG is related to the
work on distributed constraint satisfaction problems (CSPs) in constraint networks
[Pearl, 1988]. These problems consist of a set of variables, each taking a value from a
finite, discrete domain. Predefined constraints, which have the values of a subset of all
variables as input, specify a cost. The objective is to assign values to these variables
such that the total cost is minimized [Yokoo and Durfee, 1991; Dechter, 2003].

The remainder of this chapter is structured as follows. In Section 3.2 we review
the CG framework and the VE algorithm. We discuss our approximate alternative to
VE based on the max-plus algorithm in Section 3.3, and show experimental results
on randomly generated graphs in Section 3.4. Section 3.5 concludes the chapter.

3.2 Coordination graphs and variable elimination

In this section we review the problem of computing a coordinated action for a group
of n agents that maximizes a given payoff function as described by Guestrin et al.
[2002a]. More formally, this problem can be described as follows: each agent i selects
an individual action ai from its action set Ai and the resulting joint action a =
(a1, . . . , an) generates a payoff R(a) for the team. The coordination problem is to
find the optimal joint action a∗ that maximizes R(a), that is, a∗ = arg maxa R(a).

Assuming a centralized controller, one straightforward approach to solve the co-
ordination problem is to enumerate over all possible joint actions and select the one
that maximizes R(a). However, this approach quickly becomes impractical, as the

3.2. COORDINATION GRAPHS AND VARIABLE ELIMINATION 37

size of the joint action space A1 × . . . ×An grows exponentially with the number of
agents: for binary actions and n agents, there are 2n joint actions.

However, in many problems the action of an agent i only depends on a small
subset Γ(i) of all other agents. Coordination graphs (CGs) [Guestrin et al., 2002a]
exploit these dependencies by decomposing the global payoff function R(a) into a
linear combination of local payoff functions, as follows:

R(a) =

n
∑

i=1

fi(ai). (3.1)

Each local payoff function fi depends on a subset of all actions, ai ⊆ a, where ai ∈
Ai × (×j∈Γ(i)Aj) corresponds to the combination of actions of agent i and of the
agents j ∈ Γ(i) on which agent i depends. The global coordination problem is now
replaced by a number of local coordination problems each involving fewer agents.
This decomposition can be depicted using an undirected graph G = (V,E) in which
each node i ∈ V represents an agent and an edge (i, j) ∈ E indicates that agents i
and j have to coordinate their actions with each other, that is, i ∈ Γ(j) and j ∈ Γ(i).

In principle, the number of agents involved in a coordination dependency in a CG
can be arbitrary. However, in this thesis we assume that each dependency involves at
most two agents, that is, each local payoff function is defined over either one or two
agents. Note that this still allows for complicated coordinated structures since every
agent can have multiple pairwise dependency functions. Furthermore, it is possible
to generalize the proposed techniques to payoff functions with more than two agents
because any arbitrary graph can be converted to a graph with only pairwise inter-
agent dependencies [Yedidia et al., 2003; Loeliger, 2004]. To accomplish this, a new
agent is added for each local function that involves more than two agents. This new
agent contains an individual local payoff function that is defined over the combined
actions of the involved agents, and returns the corresponding value of the original
function. Note that the action space of this newly added agent is exponential in its
neighborhood size (which can lead to intractability in the worst case). Furthermore,
new pairwise payoff functions have to be defined between each involved agent and the
new agent in order to ensure that the action selected by the involved agent corresponds
to its part of the (combined) action selected by the new agent.

Assuming local functions involving at most two agents, the global payoff function
R(a) can be written as

R(a) =
∑

i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj). (3.2)

A local payoff function fi(ai) specifies the payoff contribution for the individual action
ai of agent i, and fij defines the payoff contribution for pairs of actions (ai, aj) of
‘neighboring’ agents (i, j) ∈ E. Fig. 3.1 shows a CG with eight agents and only
pairwise dependencies.

In order to solve the coordination problem and find the optimal joint action a∗ =
arg maxa R(a), we can apply the variable elimination (VE) algorithm [Guestrin et al.,

38 CHAPTER 3. MULTIAGENT COORDINATION

f12

f13

f15f24

f35
f38

f45

f46 f56
f57

f67

f78

1

2

3

4 5

6
7

8

Figure 3.1: Example CG with eight agents; an edge represents a coordination dependency.

2002a]. This method is in essence identical to variable elimination in a Bayesian net-
work [Zhang and Poole, 1996]. The algorithm operates by eliminating the agents one
by one in a predefined elimination ordering. When an agent is selected for elimination,
it first collects all payoff functions associated with its edges. Then, it computes a con-
ditional payoff function that returns the maximal value the agent is able to contribute
to the system for every action combination of its neighbors, and a best-response func-
tion, also called conditional strategy, which returns the action corresponding to this
maximizing value. The agent communicates this conditional payoff function to one
of its neighbors and is eliminated. The neighboring agent creates a new coordination
dependency (edge) between itself and the agents in the received conditional payoff
function on which it did not depend before, and then the next agent in the ordering
is selected for elimination. This process is repeated until one agent remains. This
agent fixes its action to the one that maximizes the final conditional payoff function.
This individual action is part of the optimal joint action, and the associated value of
the conditional payoff functions equals the desired value maxa R(a). A second pass in
the reverse order is then performed in which every agent computes its optimal action
based on its conditional strategy and the fixed actions of its neighbors.

We now illustrate VE on the decomposition

R(a) = f12(a1, a2) + f13(a1, a3) + f34(a3, a4), (3.3)

which is graphically depicted in Fig. 3.2(a). We apply the elimination ordering 1, 2, 3, 4
and thus first eliminate agent 1. We first observe that this agent does not depend on
the local payoff function f34 and rewrite the maximization of R(a) in (3.3) as

max
a

R(a) = max
a2,a3,a4

{

f34(a3, a4) + max
a1

[f12(a1, a2) + f13(a1, a3)]
}

. (3.4)

Since the inner maximization only depends on the actions of agent 2 and 3, agent 1
computes the conditional payoff function φ23(a2, a3) = maxa1

[f12(a1, a2)+f13(a1, a3)]

3.2. COORDINATION GRAPHS AND VARIABLE ELIMINATION 39

replacemen

1

2 3

4

f12 f13

f34

(a) Initial graph.

2 3

4
f34

φ23

(b) After elimination of agent 1.

Figure 3.2: CG corresponding to decomposition (3.3) before and after eliminating agent 1.

and the best-response function B1(a2, a3) = arg maxa1
[f12(a1, a2)+f13(a1, a3)] which

respectively return the maximal value and the associated best action agent 1 is able
to perform given the actions of agent 2 and agent 3. Because the function φ23(a2, a3)
is independent of agent 1, this agent can now be eliminated from the graph, simpli-
fying (3.4) to maxa R(a) = maxa2,a3,a4

[f34(a3, a4) + φ23(a2, a3)]. The elimination of
agent 1 induces a new dependency between agent 2 and agent 3 and thus a change in
the graph’s topology. This new topology is depicted in Fig. 3.2(b).

We then apply the same procedure to eliminate agent 2. Since this agent only
depends on φ23, we define B2(a3) = arg maxa2

φ23(a2, a3) and replace φ23 by φ3(a3) =
maxa2

φ23(a2, a3) producing

max
a

R(a) = max
a3,a4

[f34(a3, a4) + φ3(a3)], (3.5)

which is independent of a2. Next, we eliminate agent 3. We first define its condi-
tional strategy B3(a4) = arg maxa3

[f34(a3, a4) + φ3(a3)], and then replace the func-
tions f34 and φ3 with φ4(a4) = maxa3

[f34(a3, a4) + φ3(a3)] resulting in maxa R(a) =
maxa4

φ4(a4). Agent 4 is the last remaining agent and fixes its optimal action
a∗
4 = arg maxa4

φ4(a4). Next, a second pass in the reverse elimination order is per-
formed in which each agent computes its optimal (unconditional) action from its
best-response function and the fixed actions from its neighbors. In our example,
agent 3 first selects a∗

3 = B3(a
∗
4). Similarly, we get a∗

2 = B2(a
∗
3) and a∗

1 = B1(a
∗
2, a

∗
3).

In the case that one agent has more than one maximizing best-response action, it
selects one randomly. This always results in a coordinated action because each agent
always bases its decision on the communicated actions of its neighbors.

An important characteristic of the VE algorithm is that it can be implemented
fully distributed using communication between neighboring agents only. However, the
neighbors of an agent can change during the elimination process when it receives an
agent in a conditional strategy with which it did not had to coordinate before. When
communication is restricted, additional common knowledge assumptions are needed
such that each agent is able to run a copy of the algorithm (see Chapter 6). The out-
come of VE does not depend on the elimination order and always produces the optimal

40 CHAPTER 3. MULTIAGENT COORDINATION

joint action. The execution time of the algorithm, however, does depend on the elimi-
nation order. Computing the optimal order for minimizing the runtime costs is known
to be NP-complete [Arnborg et al., 1987], but good heuristics exist, for example, first
eliminating the agent with the minimum number of neighbors [Bertelé and Brioschi,
1972]. The execution time is exponential in the induced width of the graph, that
is, the size of the largest clique computed during node elimination. Depending on
the graph structure this can scale exponentially in n for densely connected graphs.
Finally, VE only produces a result after the end of the second pass. This is not
always appropriate for real-time multiagent systems where decision making must be
done under time constraints. In these cases, an anytime algorithm that improves the
quality of the solution over time would be more appropriate [Vlassis et al., 2004].

3.3 Payoff propagation

Although VE is exact, it does not scale well with densely connected graphs. In
this section, we describe our max-plus algorithm [Kok and Vlassis, 2005, 2006] as an
approximate alternative to VE. We discuss both the standard max-plus algorithm and
an anytime extension. We also describe a centralized and distributed implementation.

3.3.1 The max-plus algorithm

The CG framework bears much resemblance with a probabilistic graphical model,
which is also known as a Bayesian network or belief network [Pearl, 1988; Jordan,
1998]. Without going into too much detail, such models reason about uncertain
knowledge using probability theory. A problem is described using several random
variables which take on values in a specific domain. The combination of all random
variables specifies a joint probability distribution. The number of different combina-
tions scales exponentially with the number variables, and therefore the model also
specifies stochastic relations between the variables denoting the dependencies of the
system for the given problem. Each random variable is associated with a conditional
probability distribution which specifies the probability for its value based on the value
of a subset of the other variables. Variables which do not directly depend on each
other are conditionally independent. These dependencies can be depicted using a
graph where each variable is represented as a node and dependencies between the
random variables are denoted by, possibly directed, edges. The joint distribution
then factors into a product of conditional distributions.

Probabilistic graphical models are used to answer inference questions about the
random variables. For example, computing the posterior distribution of a random
variable given evidence about the value of some other variables, or computing the max-
imum a posteriori (MAP) configuration of the random variables, that is, the assign-
ment of the variables with the highest probability. Different, both exact and approx-
imate, algorithms exist to perform probabilistic inference. Aside the exact variable

3.3. PAYOFF PROPAGATION 41

1 2

3

4

µ12(a2)

µ21(a1)

µ23(a3)

µ32(a2)

µ24(a4)

µ42(a2)

Figure 3.3: Graphical representation of different messages µij in a graph with four agents.

elimination algorithm, one other popular method for computing the MAP configura-
tion is the max-product, also called max-plus, algorithm [Pearl, 1988; Yedidia et al.,
2003; Wainwright et al., 2004]. This method is exact for tree-structured graphs and
is analogous to the belief propagation or sum-product algorithm [Kschischang et al.,
2001]. It operates by iteratively sending locally optimized messages µij(aj) between
node i and j over the corresponding edge in the graph. For cycle-free graphs, the
message updates converge to a fixed point after a finite number of iterations [Pearl,
1988]. After convergence, each node computes its value to the global MAP assignment
based on its local incoming messages only.

There is a direct duality between computing the MAP configuration in a proba-
bilistic graphical model and finding the optimal joint action in a CG; in both cases we
are optimizing over a function that is decomposed in local terms. This allows message-
passing algorithms that have been developed for inference in probabilistic graphical
models, to be directly applicable for action selection in CGs. The max-plus algorithm
is a popular method of that family and, in the context of CGs, it can therefore be
regarded as a ‘payoff propagation’ technique for multiagent decision making.

Suppose we have a coordination graph G = (V,E) with |V | vertices and |E| edges.
In order to apply the max-plus algorithm and compute the optimal joint action a∗

maximizing (3.2), each agent i (node in G) repeatedly sends a message µij to its
neighbors j ∈ Γ(i), where µij can be regarded as a local payoff function of agent j:

µij(aj) = max
ai

{

fi(ai) + fij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)
}

+ cij , (3.6)

where Γ(i) \ j represents all neighbors of agent i except agent j, and cij is a nor-
malization value (which can be assumed zero for now). The message µij(aj) is an
approximation of the maximum payoff agent i is able to achieve for a given action

42 CHAPTER 3. MULTIAGENT COORDINATION

of agent j, and is computed by maximizing (over the actions of agent i) the sum of
the payoff functions fi and fij and all incoming messages to agent i except that from
agent j. The main difference with the max-plus algorithm in probabilistic models is
that now, instead of maximizing (the log of) a factorized probability distribution, we
maximize the sum of the payoff functions (3.2). Fig. 3.3 shows a CG with four agents
and the corresponding messages.

Messages are exchanged until they converge to a fixed point. For cycle-free graphs,
any arbitrary order results in convergence within a finite number of steps [Pearl, 1988;
Wainwright et al., 2004]. However, some orderings are more efficient with respect
to the number of required messages. Because each message µij(aj) resembles an
approximation of the payoff the subtree with agent i as root is able to produce when
agent j performs action aj , the most efficient procedure is to incrementally update
the approximation for larger subtrees. This can be accomplished by sending messages
upwards from the smallest subtrees, that is, the leaves. The complete procedure looks
as follows: each leaf computes its message and sends it to its neighbors in the graph.
Each other agent i waits until it receives the messages from all but one neighbor, for
example, agent j. Then, agent i computes µij(aj), sends it to agent j, and waits for
a return message from agent j. When this message arrives, agent i sends a message
to all neighbors Γ(i) \ j. After each agent has received and sent a message to each
of its neighbors, the messages are converged. This procedure is identical to variable
elimination with an ordering that iteratively eliminates the leafs of the graph.

After convergence, a message µji(ai) equals the payoff that is produced by the
subtree that has agent j as root when agent i performs action ai. At any time step,
we can define

gi(ai) = fi(ai) +
∑

j∈Γ(i)

µji(ai), (3.7)

which equals the contribution of the individual function of agent i and the different
subtrees with the neighbors of agent i as root. Using (3.7), we can show that, at
convergence, gi(ai) = max{a′|a′

i
=ai} R(a′) holds [Wainwright et al., 2002], that is, the

action ai selected by agent i results in a maximal global payoff of gi(ai). To select a
globally optimal joint action, each agent i has to select its individually optimal action

a∗
i = arg max

ai

gi(ai). (3.8)

If there is only one maximizing action for every agent i, the globally optimal joint
action a∗ = arg maxa R(a) is unique and has elements a∗ = (a∗

i). Note that this
optimal joint action is computed by only local optimizations (each node maximizes
gi(ai) separately). In case the local maximizers are not unique, an optimal joint action
can be computed by a dynamic programming technique [Wainwright et al., 2004,
sec. 3.1]. In this case, each agent informs its neighbors in a predefined order about
its action choice such that the other agents are able to fix their actions accordingly.

In graphs with cycles, there are unfortunately no guarantees that the max-plus
algorithm converges. Despite recent theoretical convergence results for the related

3.3. PAYOFF PROPAGATION 43

sum-product algorithm Mooij and Kappen [2005], convergence results for the max-
plus algorithm for graphs with cycles are, to the best of our knowledge, not avail-
able. Although, it has been shown that a fixed point of message passing exists
[Wainwright et al., 2004], the precise conditions for convergence are in general not
known, and therefore no assurance can be given about the quality of the correspond-
ing joint action a∗ = (a∗

i) with a∗
i from (3.8). However, empirical results demonstrate

the potential of the algorithm in practice Murphy et al. [1999].
Despite the lack of convergence proofs, the max-plus algorithm is still applied

to graph with cycles in many cases. In the context of probabilistic model, it is then
referred to as loopy belief propagation. This approach yields surprisingly good results
in practice [Murphy et al., 1999; Crick and Pfeffer, 2003; Yedidia et al., 2003].

We also apply the max-plus algorithm to graphs with cycles for our multiagent
decision-making problems. One of the main problems in such settings is that an
outgoing message from an agent i eventually becomes part of its incoming messages.
In our case the different incoming messages are summed, resulting in a continuously
increase of the messages’ values. In order to circumvent the increase of the messages’
values, we normalize each sent message in cyclic graphs by subtracting from each
element of µij the average of all values using

cij = − 1

|Aj |
∑

aj∈Aj

µij(aj) (3.9)

in (3.6).1 This approach is similar to the normalization constant used in graphical
models as described by Wainwright et al. [2004, sec. 4.2]. Still, it might be the case
that the messages do not converge. Therefore, we assume that the agents receive a
‘deadline’ signal, either from an external source or from an internal timing signal, that
indicates they should immediately report their current action. This corresponds to
situations in which the agents only have a finite amount of time to compute an action,
for example, because of environmental or other constraints. In such situations, the
max-plus algorithm is always able to report an action based on the current values of
the messages. On the contrary, the VE algorithm might not have finished its second
pass when the signal arrives, and then no coordinated action is available.

To conclude, we list three important differences between a message µij in the max-
plus algorithm with respect to the conditional payoff functions in VE. First, before
convergence each message is an approximation of the exact value (conditional team
payoff) since it depends on the incoming, still not converged, messages. Second, an
agent i only has to sum over the received messages from its neighbors which are defined
over individual actions, instead of enumerating over all possible action combinations
of its neighbors. This is the main reason for the scalability of the algorithm for graphs
with cycles. Finally, in the max-plus algorithm, messages are always sent over the
edges of the original graph. In the VE algorithm, the elimination of an agent often
results in new dependencies between agents that did not have to coordinate initially.

1Note the slight abuse of notation because cij in (3.9) depends on µij which again depends on cij

(see (3.6)) resulting in an infinite recursion. We assume cij = 0 for the definition of µij in (3.9).

44 CHAPTER 3. MULTIAGENT COORDINATION

3.3.2 Anytime extension

As stated earlier, there are no guarantees that the max-plus algorithm converges in
graphs with cycles. The global payoff corresponding to the joint action might even
decrease when the values of the messages oscillate. As a result no assurances can
be given about the quality of the corresponding joint action. This necessitates the
development of an anytime algorithm [Dean and Boddy, 1988; Zilberstein, 1996] in
which the joint action is only updated when the corresponding global payoff improves.
Therefore, we extend the max-plus algorithm by, occasionally, computing the global
payoff and updating the joint action, represented as the combination of individual
actions, only when it improves upon the best value found so far. This ensures that
every newly stored joint action produces a strictly higher payoff than the previous
one. When the joint action has to be reported, we return the last updated actions.
We refer to this approach as anytime max-plus.

Next, we describe a centralized and distributed implementation, both with and
without the anytime extension, of the max-plus algorithm. The fully distributed
implementation in combination with the anytime extension requires some specific
care since it involves the evaluation of the current joint action even though each
agent only has access to the local payoff functions in which it is involved.

3.3.3 Centralized version

The centralized version of the max-plus algorithm runs in iterations. In one iteration
each agent i computes and sends a message µij to all its neighbors j ∈ Γ(i) in
a predefined order. This process continues until all messages are converged, or a
‘deadline’ signal, either from an external source or from an internal timing signal,
is received and the current joint action is reported. For the anytime extension, the
current computed joint action is inserted into (3.2) after every iteration and the best
joint action a∗ is only updated when it improves upon the best value found so far.
A pseudo-code implementation of the centralized max-plus algorithm, including the
anytime extension, is given in Alg. 3.1.

3.3.4 Distributed version

The same functionality can also be implemented using a distributed implementation.
Each agent computes and communicates an updated message directly after it receives
a different message from one of its neighbors (line 5 to 8). This results in a com-
putational advantage over the sequential execution of the centralized algorithm since
messages are sent in parallel. See Alg. 3.2 for a distributed version in pseudo-code.

In a fully distributed implementation, the anytime extension is much more complex
because the agents do not have direct access to the actions of the other agents or the
global payoff function (3.2). Therefore, we initiate the evaluation of the (distributed)
joint action only when an agent believes it is worthwhile to do so, for example, after
a big increase in the values of the received messages. The evaluation is implemented

3.3. PAYOFF PROPAGATION 45

Algorithm 3.1 Pseudo-code of the centralized max-plus algorithm for G = (V,E).

1: initialize µij(aj) = µji(ai) = 0 for (i, j) ∈ E, ai ∈ Ai, aj ∈ Aj

2: initialize gi(ai) = 0 for i ∈ V, ai ∈ Ai, and m = −∞
3: while fixed point = false and deadline to send action has not yet arrived do
4: // run one iteration
5: fixed point = true
6: for every agent i do
7: for all neighbors j = Γ(i) do
8: compute µij(aj) = maxai

{

fi(ai) + fij(ai, aj) +
∑

k∈Γ(i)\j µki(ai)
}

+ cij

9: send message µij(aj) to agent j
10: if µij(aj) differs from previous message by a small threshold then
11: fixed point = false
12: compute gi(ai) = fi(ai) +

∑

j∈Γ(i) µji(ai), and a′
i = arg maxai

gi(ai)

13: a′ = (a′
i)

14: if use anytime extension then
15: if R(a′) > m then
16: a∗ = a′ and m = R(a′)
17: else
18: a∗ = a′

19: return a∗

using a special message passing system which requires communication between neigh-
boring agents in a directed rooted spanning tree ST of the graph G. A spanning tree
is a tree-structured subgraph that includes all nodes of the original graph. The fact
that the tree is rooted indicates that there is one node which is assigned the root. This
node has no parents. We assume ST is fixed beforehand and is common knowledge
among all agents. Fig. 3.4 shows a CG with cycles and example rooted spanning tree.

The message passage system consists of three different types of messages. The
first message is the evaluate message and indicates that an evaluation of the current
joint action is taking place. The agent who wants to initiate the evaluation, does
so by first sending this message to itself (line 11). An agent receiving an evaluation
message (lines 14 to 19) computes its best individual action based on the last received
messages, and fixes this action until after the evaluation. Furthermore, it distributes
the evaluation message to all its neighbors in ST . When an agent is a leaf of ST ,
it starts the accumulation of the payoffs using the accumulate payoff message. In
this process (lines 20 to 27), each agent i computes its local contribution qi to the
global payoff based on the local payoff functions in which it is involved, that is, fi

and fij with j ∈ Γ(i), and the fixed actions of its neighbors in the CG. Note that
a local function fij is shared by two agents and therefore only half of this value is
contributed to each of the two involved agents. After a node has received all payoffs
of its children, accumulated in pi, it adds its own contribution and sends the result
to its parent. Finally, the root of ST has received all accumulated payoffs from its

46 CHAPTER 3. MULTIAGENT COORDINATION

f12

f13

f15f24

f35 f38

f45

f46 f56
f57

f67

f78

1

2

3

4 5

6
7

8

Figure 3.4: The CG of Fig. 3.1 and a corresponding rooted spanning tree. All edges are
directed towards the root, agent 1.

children. The sum of these payoffs resembles the summation in (3.2) since

∑

i∈V

qi(ai) =
∑

i∈V

[fi(ai) +
∑

j∈Γ(i)

1

2
fij(ai, aj)] =

∑

i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj) = R(a),

and thus corresponds to the global payoff of the fixed actions of the nodes in the
graphs. This value is distributed to all nodes in ST using the global payoff message
(lines 28 to 31). After receiving this message, an agent updates its best individual
action a∗

i only when the received global payoff improves upon the best one found
so far. Furthermore, the agent unlocks its fixed action. Finally, when a ‘deadline’
signal arrives, each agent reports the action related to the highest found global payoff
(line 32), which thus does not has to correspond to the current messages.

The execution time of the centralized implementation is linear in the number of
agents and the average degree of the graph. Specifically, it has complexity O(nd)
where n is the number of agents and d is the average degree of the graph. In one
iteration each agent computes a message for each of its neighbors and sends it. The
computation of a message is a linear maximization, over the actions of the agent, of
the messages received from its neighbors. The anytime extension only incorporates
an extra test of constant time and therefore has the same complexity.

In the distributed implementation the messages are sent in parallel, resulting in
a complexity O(d). The anytime extension occasionally involves the evaluation of
the joint action. This procedure consists of three message passings over the complete
graph. Since each message has to be propagated to all agents, the time for each
pass scales linearly in the depth of the graph. The actual time for sending all the
messages depends on the characteristics of the available communication channel. In
the remainder of this thesis, we assume instantaneous communication.

3.3. PAYOFF PROPAGATION 47

Algorithm 3.2 Pseudo-code of a distributed max-plus implementation for agent i,
coordination graph G = (V,E), and spanning tree ST = (V, S).

1: initialize µij(aj) = µji(ai) = 0 for j ∈ Γ(i), ai ∈ Ai, aj ∈ Aj

2: initialize qi = pi = 0, and m = −∞
3: while deadline to send action has not yet arrived do
4: wait for message msg
5: if msg = µji(ai) // max-plus message then
6: for all neighbors k ∈ Γ(i) \ j do
7: compute µik(ak) = maxai

{

fi(ai) + fik(ai, ak) +
∑

l∈Γ(i)\k µli(ai)
}

+ cik

8: send message µik(ak) to agent k if it differs from last sent message
9: if use anytime extension then

10: if heuristic indicates global payoff should be evaluated then
11: send evaluate(i) to agent i // initiate computation global payoff
12: else
13: a∗

i = arg maxai
[fi(ai) +

∑

k∈Γ(i) µki(ai)]

14: if msg = evaluate(j) // receive request for evaluation from agent j then
15: if a′

i not locked then
16: lock a′

i = arg maxai
[fi(ai) +

∑

j∈Γ(i) µji(ai)], and set pi = 0

17: send evaluate(i) to all neighbors (parent and children) in ST 6= j
18: if i = leaf in ST then
19: send accumulate payoff(0) to agent i // initiate accumulation payoffs
20: if msg = accumulate payoff(pj) from agent j then
21: pi = pi + pj // add payoff child j
22: if received accumulated payoff from all children in ST then
23: get actions a′

j from j ∈ Γ(i) in CG and set qi = fi(a
′
i)+

1
2

∑

j∈Γ(i) fij(a
′
i, a

′
j)

24: if i = root of ST then
25: send global payoff(qi + pi) to agent i
26: else
27: send accumulate payoff(qi + pi) to parent in ST
28: if msg = global payoff(g) then
29: if g > m then
30: a∗

i = a′
i and m = g

31: send global payoff(g) to all children in ST and unlock action a′
i

32: return a∗
i

48 CHAPTER 3. MULTIAGENT COORDINATION

3.4 Experiments

In this section, we test the VE algorithm and the two variants of the max-plus algo-
rithm on differently shaped graphs with random payoff functions. We investigate both
cycle-free and cyclic graphs using the centralized max-plus algorithm from Alg. 3.1.

3.4.1 Trees

In this section, we describe our experiments with the max-plus algorithm on trees. As
explained in Section 3.3.1, the max-plus converges algorithm to the optimal solution
in this setting. We empirically illustrate this, and furthermore investigate the number
of iterations needed for convergence depending on the order in which the agents sent
their messages. We both study a random order and an ordering identical to VE.

We test our algorithm on trees G = (V,E) with |V | = 100 agents, each having
|Ai| = 4 actions, and a fixed number of edges, |E| = |V | − 1 = 99. We create 24
trees with a maximal degree, the maximal number of neighbors per node, in the range
d ∈ [2, 25]. The graphs are generated as follows. First, the agents are labeled from 1
to 100. Then, starting from node 2, each node is connected with the first node in the
ordering that currently has less than d neighbors. Since the number of agents and
edges is fixed and the degree varies, each tree has a different depth. Fig. 3.5 shows
two graphs corresponding to respectively the minimum and maximum considered
degree. Fig. 3.5(a) depicts the situation in which each agent has a maximal degree
of 2, resulting in a tree with depth 99. Fig. 3.5(b) depicts the situation in which each
agent has a maximal degree of 25 and results in a tree with depth 2. Four nodes have
a degree of 25. For this, 25 + 3 · 24 = 97 of the 99 nodes are assigned a parent. The
remaining two nodes are depicted on the right. Each edge (i, j) ∈ E is associated with
a payoff function fij where each action combination is assigned a payoff fij(ai, aj)
randomly generated from a standard normal distribution N (0, 1).

We apply both the VE and the max-plus algorithm to compute the joint action.
In VE we always eliminate an agent with the minimum number of neighbors, and
each local maximization step thus involves at most two agents. For the max-plus
algorithm, we apply both a random order and the same order as VE to select the
agent that sends its messages. For the latter case we process the agents in the same
order as the elimination order of VE in the first iteration (loop in line 6 of Alg. 3.1).
In the second iteration we iterate over the agents in the reverse order, identical to the
second pass in the VE algorithm in which each agent fixes its action.

Fig. 3.6 shows the relative payoff found with the max-plus algorithm with respect
to the optimal payoff, computed with the VE algorithm, after each iteration. The
results are averaged over all 24 graphs. As expected, all policies converge to the
optimal solution. When using the elimination order of VE to select the next agent, the
max-plus algorithm converges after two iterations for all graphs. For this order, each
message only has to be computed once [Loeliger, 2004] and the max-plus algorithm
become equivalent to the VE algorithm. When using a random order some updates are
unnecessary, and it takes a few iterations before the same information is propagated

3.4. EXPERIMENTS 49

(a) Tree with maximal degree of 2. (b) Tree with maximal degree of 25.

Figure 3.5: Example structure of two trees with respectively a maximal degree of 2 and 25.

through the graph. The time needed to run the different methods are similar and
negligible, and therefore not listed. As we will see next, the timing differences for
graphs with cycles, however, are much more pronounced.

3.4.2 Graphs with cycles

We also test VE and the max-plus variants on graphs with cycles. As stated in
Section 3.3.1, it is not guaranteed that the max-plus algorithm will convergence to
the optimal solution. The VE algorithm provably converges to the optimal joint
action, but its computation time can be exponential in the number of dependencies.

We ran the algorithms on differently shaped graphs with 15 agents and a varying
number of edges. In order to generate balanced graphs in which each agent approx-
imately has the same degree, we start with a graph without edges and iteratively
connect the two agents with the minimum number of neighbors. In case multiple
agents satisfy this condition, an agent is picked at random from the possibilities. We
apply this procedure to create 100 graphs for each |E| ∈ {8, 9, . . . , 37}, resulting in a
set of 3, 000 graphs. The set thus contains graphs in the range of on average 1.067
neighbors per agent (8 edges) to 4.93 neighbors per agent (37 edges). Fig. 3.7 depicts
example graphs with respectively 15, 23 and 37 edges (on average 2, 3.07 and 4.93
neighbors per node). We create three copies of this set, each having a different pay-
off function related to the edges in the graph. In the first set, each edge (i, j) ∈ E
is associated with a payoff function fij defined over five actions per agent and each
action combination is assigned a random payoff from a standard normal distribution,
that is, fij(ai, aj) ∼ N (0, 1). This results in a total of 515, around 3 billion, different
possible joint actions. In the second set, we add one outlier to each of the local payoff
functions: for a randomly picked joint action, the corresponding payoff value is set to
10 · N (0, 1). For the third test set, we specify a payoff function based on 10 actions
per agent resulting in 1015 different joint actions. The values of the different payoff
functions are again generated using a standard normal distribution.

50 CHAPTER 3. MULTIAGENT COORDINATION

2 4 6 8 10 12 14
0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

variable elimination
max−plus (random order)
max−plus (VE order)

Figure 3.6: Relative payoff for the max-plus algorithm after each iteration. Results are
averaged over 24 differently shaped graphs.

For all graphs we compute the joint action using the VE algorithm, the standard
max-plus algorithm, and the max-plus algorithm with the anytime extension. Irre-
spectively of convergence, all max-plus methods perform 100 iterations. As we will
see later in Fig. 3.9 the policy has stabilized at this point. Furthermore, a random
ordering is used in each iteration to determine which agents sends its messages.

The timing results for the three different test sets are plotted in Fig. 3.8.2 The x-
axis shows the average degree of the graph, and the y-axis shows, using a logarithmic
scale, the average timing results, in milliseconds, to compute the joint action for the
corresponding graphs. Remember from Section 3.2 that the computation time of
the VE algorithm depends on the induced width of the graph. The induced width
depends both on the average degree and the actual structure of the graph. The
latter is generated at random, and therefore the complexity of graphs with the same
average degree differ. Table 3.1 shows the induced width for the graphs used in the
experiments based on the elimination order of the VE algorithm, that is, iteratively
remove a node with the minimum number of neighbors. The results are averaged over
graphs with a similar average degree. For a specific graph, the induced width equals
the maximal number of neighbors that have to be considered in a local maximization.

In Fig. 3.8, we show the timing results for the standard max-plus algorithm; the
results for the anytime extension are identical since they only involve an additional
check of the global payoff value after every iteration. The plots indicate that the time
for the max-plus algorithm grows linearly as the complexity of the graphs increases.
This is a result of the relation between the number of messages and the (linearly
increasing) number of edges in the graph. The graphs with 10 actions per agent

2All results are generated on an Intel Xeon 3.4GHz / 2GB machine using a C++ implementation.

3.4. EXPERIMENTS 51

(a) Graph with 15 edges (average
degree of 2).

(b) Graph with 23 edges (aver-
age degree of 3.07).

(c) Graph with 37 edges (average
degree of 4.93).

Figure 3.7: Example graphs with 15 agents and cycles.

average degree (1, 2] (2, 3] (3, 4] (4, 5]

induced width 1.23 (±0.44) 2.99 (±0.81) 4.94 (±0.77) 6.37 (±0.68)

Table 3.1: Average induced width and corresponding standard deviation for graphs with
an average degree in (x − 1, x].

require more time compared to the two other sets because the computation of every
message involves a maximization over 100 instead of 25 joint actions. Note that all
timing results are generated with a fixed number of 100 iterations. As we will see later,
the max-plus algorithm can be stopped earlier without much loss in performance,
resulting in even quicker timing results.

For the graphs with a small, less than 2.5, average degree, VE outperforms the
max-plus algorithm. In this case, each local maximization only involves a few agents,
and VE is able to finish its two passes through the graph quickly. However, the time
for the VE algorithm grows exponentially for graphs with a higher average degree
because for these graphs it has to enumerate over an increasing number of neighboring
agents in each local maximization step. Furthermore, the elimination of an agent often
causes a neighboring agent to receive a conditional strategy involving agents it did
not have to coordinate with before, changing the graph topology to an even denser
graph. This effect becomes more apparent as the graphs become more dense. More
specifically, for graphs with 5 actions per agent and an average degree of 5, it takes
VE on average 23.8 seconds to generate the joint action. The max-plus algorithm,
on the other hand, only requires 10.18 milliseconds for such graphs. There are no
clear differences between the two sets with 5 actions per agent since they both require
the same number of local maximizations, and the actual values do not influence the
algorithm. However, as is seen in Fig. 3.8(c), the increase of the number of actions per
agent slows the VE algorithm down even more. This is a result of the larger number of
joint actions which has to be processed during the local maximizations. For example,

52 CHAPTER 3. MULTIAGENT COORDINATION

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

10
4

10
5

average degree

tim
e

(m
se

c)

VE
max−plus

(a) 5 actions per agent.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

10
4

10
5

average degree
tim

e
(m

se
c)

VE
max−plus

(b) 5 actions and outliers.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

10
4

10
5

average degree

tim
e

(m
se

c)

VE
max−plus

(c) 10 actions per agent.

Figure 3.8: Timing results VE and max-plus for different graphs with 15 agents and cycles.

during a local maximization of an agent with five neighbors 55 = 3, 125 actions have
to be enumerated in the case of 5 actions per agent. With 10 actions per agent, this
number increases to 105 = 100, 000 actions. During elimination the topology of the
graph can change to very dense graphs resulting in even larger maximizations. This
is also evident from the experiments. For some graphs with ten actions per agent and
an average degree higher than 3.2, the size of the intermediate tables grows too large
for the available memory, and VE is not able to produce a result. These graphs are
removed from the set. For the graphs with an average degree between 3 and 4, this
results in the removal of 81 graphs. With an increase of the average degree, this effect
becomes more apparent: VE is not able to produce a result for 466 out of the 700
graphs with an average degree higher than 4; all these graphs are removed from the
set. This also explains why the increase in the curve of VE in Fig. 3.8(c) decreases:
the more difficult graphs, which take longer to complete, are not taken into account.
Even without these graphs, it takes VE on average 339.76 seconds, almost 6 minutes,
to produce a joint action for the graphs with an average degree of 5. The max-plus
algorithm, on the other hand, needs on average 31.61 milliseconds.

The max-plus algorithm thus outperforms VE with respect to the computation
time for densely connected graphs. But how do the resulting joint actions of the max-
plus algorithm compare to the optimal solutions of the VE algorithm? Fig. 3.9 shows
the payoff found with the max-plus algorithm relative to the optimal payoff after each
iteration. A relative payoff of 1 indicates that the found joint action corresponds to
the optimal joint action, while a relative payoff of 0 indicates that it corresponds to the
joint action with the minimal possible payoff. All four displayed curves correspond to
the average result of a subset with a similar average degree. Specifically, each subset
contains all graphs with an average degree in (x − 1, x], with x ∈ {2, 3, 4, 5}.

We first discuss the result of the standard max-plus algorithm in the graphs on the
left. For all three sets, the loosely connected graphs with an average degree less than
two converge to a similar policy as the optimal joint action in a few iterations only.
As the average degree increases, the resulting policy declines. As seen in Fig. 3.9(c),
this effect is less evident in the graphs with outliers; the action combinations related
to the positive outliers are clearly preferred, and lowers the number of oscillations.

3.4. EXPERIMENTS 53

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(a) Max-plus (5 actions per agent).

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(b) Anytime max-plus (5 actions).

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(c) Max-plus (5 actions per agent and outliers)

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(d) Anytime max-plus (5 actions and outliers).

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(e) Max-plus (10 actions per agent).

20 40 60 80 100
0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
−

pl
us

/p
ay

of
f v

e

VE
max−plus avg. degree (1,2]
max−plus avg. degree (2,3]
max−plus avg. degree (3,4]
max−plus avg. degree (4,5]

(f) Anytime max-plus (10 actions).

Figure 3.9: Relative payoff compared to VE for standard max-plus (graphs on the left) and
anytime max-plus (graphs on the right) for graphs with 15 agents and cycles.

54 CHAPTER 3. MULTIAGENT COORDINATION

Increasing the number of actions per agents has a negative influence on the result
because of the increase in the total number of action combinations, as is evident from
Fig. 3.9(e). Note that the oscillations for the graphs with the highest average degree
are caused by the fact that VE is not able to produce a result for many of the problems
with this complexity, and the average is taken over a smaller set.

When the anytime version, which always returns the best joint action found so
far, is applied, the obtained payoff improves for all graphs. This indicates that the
failing convergence of the messages causes the standard max-plus algorithm to oscil-
late between different joint actions and ‘forget’ good joint actions. Fig. 3.9 shows that
for all sets near-optimal policies are found, although the more complex graphs need
more iterations to find them.

3.5 Discussion

In this chapter we addressed the problem of coordinating the behavior of a large
group of agents. We described a payoff propagation algorithm, the max-plus algo-
rithm, that can be used as an alternative to variable elimination (VE) for finding the
optimal joint action in a coordination graph (CG) with predefined payoff functions.
VE is an exact method that always reports the joint action that maximizes the global
payoff, but is slow for densely connected graphs with cycles as its worst-case complex-
ity is exponential in the number of agents. Furthermore, this method is only able to
report a solution after the complete algorithm has ended. The max-plus algorithm,
analogous to the belief propagation algorithm in Bayesian networks, operates by re-
peatedly sending local payoff messages over the edges in the CG. By performing a
local computation based on its incoming messages, each agent is able to select its in-
dividual action. For tree-structured graphs, this approach is identical to VE, and also
results in the optimal joint action. For large, highly connected graphs with cycles,
we provided empirical evidence that the max-plus algorithm can find good solutions
exponentially faster than VE. Our anytime extension, which occasionally evaluates
the current joint action and stores the best one found so far, ensures that the agents
select a coordinated joint action and essentially produces a convergent max-plus vari-
ant. It results in near-optimal performance. An advantage of the max-plus algorithm
is that it can be implemented fully distributed using asynchronous and parallel mes-
sage passings and, contrary to VE, the graph’s topology remains unchanged: in all
cases the agents have to coordinate only with their neighbors in the original graph.

In the subsequent chapter we will apply both the VE and the max-plus algorithm
as the building blocks for our learning algorithms in which it is important to quickly
compute the best joint action in a distributed manner.

4

Multiagent Learning

In this chapter we focus on sequential decision-making problems in which the agents
repeatedly interact with their environment and try to optimize the long-term re-
ward they receive from the system. We present a family of model-free multiagent
reinforcement-learning techniques, called sparse cooperative Q-learning, which ap-
proximate the global action-value function based on the topology of a coordination
graph, and perform local updates using the contributions of the individual agents to
the maximal global action value [Kok and Vlassis, 2006]. The combined use of a de-
composition of the action-value function based on the edges of a coordination graph
and the max-plus algorithm for efficient action selection results in an approach that
scales only linearly in the problem size. We provide experimental evidence that our
sparse cooperative Q-learning methods outperform related multiagent reinforcement-
learning methods based on temporal differences.

4.1 Introduction

In Chapter 3 we discussed the problem of selecting an optimal joint action in a group
of agents for a given payoff structure in single-state problems. In this chapter, we
consider sequential decision-making problems in which the agents repeatedly select
actions. After the execution of a joint action, the agents receive a reward and the
system transitions to a new state. The goal of the agents is to select the actions that
optimize a shared performance measure based on the received rewards. This might
involve a sequence of decisions. We will only concentrate on problems in which the
agents have no prior knowledge about the effect of their actions, and thus have to
learn this information based on the delayed rewards. Furthermore, we focus on in-
herently cooperative tasks involving a large group of agents in which the success of
the team is measured by the specific action combination of the agents [Parker, 2002].
This is in contrast with other approaches which assume implicit coordination through
either the observed state variables [Dutta et al., 2005; Tan, 1993], or reward struc-
ture [Becker et al., 2003]. Possible examples of application domains include network
routing [Boyan and Littman, 1994; Dutta et al., 2005], sensor networks [Lesser et al.,
2003; Modi et al., 2005], but also robotic teams, for example, motion coordination
[Arai et al., 2002] and RoboCup [Kitano et al., 1995; Kok et al., 2005b].

56 CHAPTER 4. MULTIAGENT LEARNING

Existing learning techniques have been proved successful in learning the behavior
of a single agent in stochastic environments [Tesauro, 1995; Crites and Barto, 1996;
Ng et al., 2004]. However, as stated earlier in Section 2.3.4, the presence of multiple
learning agents in the same environment complicates matters. First of all, the action
space scales exponentially with the number of agents. This makes it infeasible to ap-
ply standard single-agent techniques in which an action value, representing expected
future reward, is stored for every possible state-action combination. An alternative
approach is to decompose the global action value among the different agents. Each
agent then updates a local action value which only depends on its own individual
action. However, each agent now ignores the actions of the other agents, but these
actions still influence the received reward and resulting state. As a result the en-
vironment becomes dynamic from the viewpoint of a single agent, which possibly
compromises convergence. Other complications, which are outside the focus of this
thesis, arise when the different agents receive incomplete and noisy observations of
the state space [Goldman and Zilberstein, 2004], or have a restricted communication
bandwidth [Goldman and Zilberstein, 2003; Pynadath and Tambe, 2002].

For our model representation we will use the collaborative multiagent Markov
decision process (collaborative MMDP) model described in Section 2.3.3. In this
model each agent selects an individual action in a particular state. The resulting
joint action, that is, the combination of all individual actions, causes the transition to
a new state and provides each agent an individual reward. The global reward is the
sum of all individual rewards. This approach differs from other multiagent models,
for example, multiagent MDPs (MMDPs) [Boutilier, 1996] or decentralized MDPs
(DEC-MDPs) [Bernstein et al., 2000], in which all agents observe the global reward
directly. In a collaborative MAS, it is still the goal of the agents to optimize the
global reward, but the individual received rewards allow for solution techniques that
take advantage of the structure of the problem [Bagnell and Ng, 2006].

In this chapter, we study sequential decision-making problems and learn the
behavior of a group of agents using model-free reinforcement-learning techniques
[Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998]. In our approach, called
sparse cooperative Q-learning, we analyze different decompositions of the global
action-value function using the framework of coordination graphs (CGs) described
in Section 3.2. The structure of the used CG is determined beforehand, and should
reflect the specific problem under study. For a given CG, we investigate both a de-
composition in terms of the nodes (or agents), as well as a decomposition in terms
of the edges of the graph. In the agent-based decomposition the local action-value
function of an agent is based on its own action and those of its neighboring agents. In
the edge-based decomposition each local function is based on the actions of the two
agents that form an edge in the graph. The global value of a joint action in the used
CG represents the action value for a specific state. In a sequential decision-making
problem, however, we have to store action values for multiple states, and therefore
we associate each state to a CG with a similar decomposition, but with different val-
ues for the local functions. In order to update the local action-value function for a
specific state, the contributions of the involved agents to the maximal global action

4.2. COORDINATED REINFORCEMENT LEARNING 57

value, computed using either the max-plus or the variable elimination (VE) algorithm,
are used. We show that the combination of the edge-based decomposition and the
max-plus algorithm scales linearly in the number of dependencies.

We apply our approach to different problems involving a large group of agents
with many dependencies, and compare it to four other multiagent variants of tabu-
lar Q-learning, three of which, that is, the MDP learners, independent learners (IL),
and distributed value functions (DVF), are already described in Section 2.3.4. The
remaining variant, coordinated reinforcement learning, is reviewed in Section 4.2.
We show that our method outperforms all these existing temporal-difference learning
techniques in terms of the quality of the extracted policy. In this thesis, we only con-
sider temporal-difference methods. We do not discuss other multiagent reinforcement-
learning methods which are based, for example, on policy search [Peshkin et al., 2000;
Moallemi and Van Roy, 2004] or Bayesian approaches [Chalkiadakis and Boutilier,
2003]. Furthermore, we also do not consider function-approximation algorithms.
They have been successfully applied in domains with large continuous state sets
[Bertsekas and Tsitsiklis, 1996; Stone et al., 2005], but they are less applicable for
domains with many joint actions because it is more difficult to construct an appro-
priate distance measure for discrete joint actions than for continuous state variables.

The remainder of this chapter is structured as follows. In Section 4.2 we review
coordinated reinforcement learning. In Section 4.3, we introduce the different decom-
positions of our sparse cooperative Q-learning methods. In Section 4.4 we describe
our experiments and give results on both a stateless problem and a distributed sensor
network. Finally, we end with some concluding remarks in Section 4.5.

4.2 Coordinated reinforcement learning

Guestrin et al. [2002b] describe three coordinated reinforcement-learning (CoordRL)
approaches that take advantage of the structure of the problem under study. The three
methods are respectively a variant of Q-learning, policy iteration, and direct policy
search. In this section we review the Q-learning variant and discuss its advantages and
disadvantages. The main idea of this method is to decompose the global Q-function
into a linear combination of local agent-dependent Q-functions:

Q(s,a) =
n

∑

i=1

Qi(si,ai). (4.1)

Each local Q-function Qi for an agent i is based on si and ai which respectively
represent the subset of all state and action variables relevant for agent i. These
dependencies are established beforehand and differ per problem. Note that using
this representation, each agent only needs to observe the state variables si which are
part of its local Q-function. The corresponding CG is constructed by adding an edge
between agent i and j when the action of agent j is included in the action variables
of agent i, that is, aj ∈ ai. As an example, imagine a computer network in which

58 CHAPTER 4. MULTIAGENT LEARNING

each machine is modeled as an agent and each machine only depends on the state
and action variables of itself and the machines it is connected to. In this case, the
CG equals the network topology.

In the work of Guestrin et al. [2002b], a local Q-function is updated using a similar
method to the local Q-learning update rule for the IL approach in (2.14). However, an
update is now based on the global temporal-difference error, the difference between the
current global Q-value and the expected future discounted return for the experienced
state transition. The complete update then looks as follows:

Qi(si,ai) := Qi(si,ai) + α[R(s,a) + γ max
a
′

Q(s′,a′) − Q(s,a)]. (4.2)

In this equation, the global reward R(s,a) is given. The maximizing action in s′ and
the associated maximal expected future return, maxa

′ Q(s′,a′), are computed in a
distributed manner by applying the variable elimination (VE) algorithm on the CG
as discussed in Section 3.2. Finally, the estimate of the global Q-value in s, Q(s,a)
in (4.2), is computed by fixing the action of every agent to the one assigned in a
and applying a message passing scheme similar to the one used in the VE algorithm.
Note that we have used a table-based representation for the Q-functions in our dis-
cussion. However, since each individual Q-function is entirely local, each agent is
allowed to choose its own representation, for example, using a function approximator
[Guestrin et al., 2002b].

The advantage of the CoordRL approach is that it is completely distributed. Each
agent keeps a local Q-function and only has to exchange messages with its neighbors
in the graph in order to compute the global Q-values. In sparsely connected graphs,
this results in large computational savings since the complete joint action space can
be approximated by a sum of small local functions. However, both the space and
computational complexity grow exponentially with the number of agents resulting in
problems for densely connected graphs in which many agents depend on each other.
The growth in the space complexity is caused by the fact that the size of each local Q-
function grows exponentially with the number of involved agents, that is, the degree
of the corresponding node in the graph, since each agent constructs an action-value
based on all action combinations of its own action and those of its neighbors. The
growth in the computational complexity is a result of the computation using the VE
algorithm required to compute the maximizing joint action. This algorithm grows
exponential with the induced width of the graph, as was shown in Section 3.4,

Next, we describe our sparse cooperative Q-learning approach. This method also
decomposes the global Q-learning into a linear combination of local Q-functions. We
will both investigate an agent-based decomposition, similar to the CoordRL approach,
and an edge-based decomposition. Using the latter decomposition, the max-plus
algorithm can be used to compute the maximizing the joint action, which results in
large savings in the computational complexity of the algorithm for densely connected
graphs. Another difference with respect to the CoordRL approach is related to the
update of the action values: each local function is updated based on its own local
contribution to the global function.

4.3. SPARSE COOPERATIVE Q-LEARNING 59

4.3 Sparse cooperative Q-learning

In this section, we describe our sparse cooperative Q-learning, or SparseQ, approach: a
family of methods which approximate the global Q-function by a linear combination
of local Q-functions. Just as in the coordination reinforcement-learning approach
(CoordRL), the decomposition is based on the structure of a CG which is chosen
beforehand. In principle we can select any CG, but useful domain knowledge can be
exploited by choosing a CG that incorporates the dependencies corresponding to the
problem under study. For a given CG, we investigate both a decomposition in terms
of the nodes, as well as a decomposition in terms of the edges of the graph. In the
agent-based decomposition the local function of an agent is, just as in the CoordRL
approach, based on its own action and those of its neighboring agents. In the edge-
based decomposition, however, each local function is related to the actions of the two
agents that form an edge. In order to update a local function, the key idea is to base
the update on the local temporal-difference error, that is, the difference between the
current local Q-value and the local contribution of this agent to the global return.
This differs from the CoordRL approach which, as in (4.2), always uses the global
temporal-difference error for its updates.

Next, we first describe an agent-based decomposition of the global Q-function and
explain how the local contribution of an agent is used in the update step. Thereafter,
in Section 4.3.2, we describe an edge-based decomposition, together with two possible
update methods: an edge-based and an agent-based update method.

4.3.1 Agent-based decomposition

Next, we describe an agent-based decomposition of the global action value in combi-
nation with a local update rule. As in CoordRL, the global Q-function is decomposed
over the different agents. Every agent i is associated with a local Q-function Qi(si,ai)
which only depends on a subset of all possible state and action variables. These de-
pendencies are specified beforehand and depend on the problem under study. The
local Q-functions correspond to a CG that is constructed by connecting all agents
that depend on each other, that is, for agent i and j either aj ∈ ai or ai ∈ aj . See
Fig. 4.1(a) for an example agent-based decomposition for a 4-agent problem.

Since the global Q-function equals the sum of the local Q-functions of all n agents,
Q(s,a) =

∑n

i=1 Qi(si,ai), we can rewrite the Q-learning update rule in (2.12) as

n
∑

i=1

Qi(si,ai) :=
n

∑

i=1

Qi(si,ai) +

α
[

n
∑

i=1

Ri(s,a) + γ max
a
′

Q(s′,a′) −
n

∑

i=1

Qi(si,ai)
]

. (4.3)

Only the expected discounted return, maxa′ Q(s′,a′), cannot be directly written as the
sum of local terms since it depends on the globally maximizing joint action. However,

60 CHAPTER 4. MULTIAGENT LEARNING

1

2 3

4

Q1(a1, a2, a3)

Q2(a1, a2)

Q3(a1, a3, a4)

Q4(a3, a4)

(a) Agent-based decomposition.

1

2 3

4

Q12(a1, a2) Q13(a1, a3)

Q34(a3, a4)

(b) Edge-based decomposition.

Figure 4.1: An agent-based and edge-based decomposition of the global Q-function.

we can use the VE algorithm to compute, in a distributed manner, the maximizing
joint action a∗ = arg maxa

′ Q(s′,a′) in state s′, and from this compute the local
contribution Qi(s

′
i,a

∗
i) of each agent to the total action value Q(s′,a∗). Note that

the local contribution of an agent to the global action value might be lower than the
maximizing value of its local Q-function because it is unaware of the dependencies
of its neighboring agents with the other agents in the CG. Since we can substitute
maxa′ Q(s′,a′) with

∑n
i=1 Qi(s

′,a∗
i), we are able to decompose all terms in (4.3) and

rewrite the update for each agent i separately:

Qi(si,ai) := Qi(si,ai) + α[Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)]. (4.4)

This update is completely based on local terms and only requires the distributed VE
algorithm to compute the maximizing joint action a∗. In contrast to CoordRL, we
directly take advantage of the local rewards received by the different agents. Especially
for larger problems with many agents, this allows us to propagate back the reward to
the local functions related to the agents responsible for the generated rewards. This
is not possible in CoordRL which uses the global reward to update the different local
functions. As a consequence, the agents are not able to distinguish which agents are
responsible for the received reward, and all functions, including the ones which are
not related to the received reward, are updated equally. It might even be the case
that the high reward generated by one agent, or a group of agents, is counterbalanced
by the negative reward of another agent. In this case, the combined global reward
equals zero and no functions are updated.

Just as in CoordRL, both the representation of the local Q-functions and the
computation time of the VE algorithm used to compute the global joint action grow
exponentially with the number of neighbors. This becomes problematic for densely
connected graphs, and for this reason we also investigate an edge-based decomposition
of the Q-function which does not suffer from this problem.

4.3. SPARSE COOPERATIVE Q-LEARNING 61

4.3.2 Edge-based decomposition

A different method to decompose the global Q-function is to define it in terms of
the edges of the corresponding CG. Contrary to an agent-based decomposition, which
scales exponentially with the number of neighbors in the graph, an edge-based de-
composition scales linearly in the number of neighbors. For a coordination graph
G = (V,E) with |V | vertices and |E| edges, each edge (i, j) ∈ E corresponds to a lo-
cal Q-function Qij , and the sum of all local Q-functions defines the global Q-function:

Q(s,a) =
∑

(i,j)∈E

Qij(sij , ai, aj), (4.5)

where sij ⊆ si ∪ sj is the subset of the state variables related to agent i and agent j
which are relevant for their dependency. Note that each local Q-function Qij always
depends on the actions of two agents, ai and aj , only. Fig. 4.1(b) shows an example
of an edge-based decomposition for a 4-agent problem.

An important consequence of this decomposition is that it only depends on pair-
wise functions. This makes it possible to directly apply the max-plus algorithm from
Section 3.3 to compute the maximizing joint action, something which is not possi-
ble for the agent-based decomposition. For the edge-based decomposition, both the
action-value function and the method for action selection now scale linearly in the
number of dependencies, resulting in an approach that can be applied to large agent
networks with many dependencies.

In order to update a local Q-function, we have to propagate back the reward
received by the individual agents. This is complicated by the fact that the rewards
are received per agent, while the local Q-functions are defined over the edges. For an
agent with multiple neighbors it is therefore not possible to derive which dependency
generated (parts of) the reward. Our approach is to associate each agent with a
local Q-function Qi that is directly computed from the edge-based Q-functions Qij .
This allows us to relate the received reward of an agent directly to its agent-based
Q-function Qi. In order to compute Qi, we assume that each edge-based Q-function
contributes equally to the two agents that form the edge. Then, the local Q-function
Qi of agent i is defined as the summation of half the value of all local Q-functions
Qij of agent i and its neighbors j ∈ Γ(i), that is,

Qi(si,ai) =
1

2

∑

j∈Γ(i)

Qij(sij , ai, aj). (4.6)

Note that the sum of all local Q-functions Qi equals Q in (4.5). Note that there
are also other approaches possible to divide the reward over the different agents, for
example, weighted based on the current action values. In this thesis, however, we
assume that each agent contributes equally to the received reward.

Next, we will describe two different update methods for the edge-based decompo-
sition which are defined in terms of these local agent-based Q-functions.

62 CHAPTER 4. MULTIAGENT LEARNING

Edge-based update

The first update method we consider updates each local Q-function Qij based on its
current estimate and its contribution to the maximal return in the next state. For
this, we rewrite (4.4) by replacing every instance of Qi with its definition in (4.6) to

1

2

∑

j∈Γ(i)

Qij(sij , ai, aj) :=
1

2

∑

j∈Γ(i)

Qij(sij , ai, aj) +

α





∑

j∈Γ(i)

Ri(s,a)

|Γ(i)| + γ
1

2

∑

j∈Γ(i)

Qij(s
′
ij , a

∗
i , a

∗
j) −

1

2

∑

j∈Γ(i)

Qij(sij , ai, aj)



 . (4.7)

Note that in this decomposition for agent i we made the assumption that the reward
Ri is divided proportionally over its neighbors Γ(i). In order to get an update equation
for an individual local Q-function Qij , we remove the sums. Because, one half of every
local Q-function Qij is updated by agent i and the other half by agent j, agent j
updates the local Q-function Qij using a similar decomposition as (4.7). Adding the
two gives the following update equation for a single local Q-function Qij :

Qij(sij , ai, aj) := Qij(sij , ai, aj) +

α

[

Ri(s,a)

|Γ(i)| +
Rj(s,a)

|Γ(j)| + γQij(s
′
ij , a

∗
i , a

∗
j) − Qij(sij , ai, aj)

]

. (4.8)

Each local Q-function Qij is thus updated with a proportional part of the received
reward of the two agents it is related to and with the contribution of this edge to the
maximizing joint action a∗ = (a∗

i) = arg maxa
′ Q(s′,a′) in the next state s′. The

latter is computed by either applying the exact VE algorithm or the approximate
max-plus algorithm. Note that we can also derive (4.8) from (2.12) directly using
(4.5). However, we want to emphasize that it is possible to derive this update rule
from the agent-based decomposition discussed in Section 4.3.1.

Fig. 4.2(a) shows a graphical representation of the update. The left part of the
figure shows a partial CG in state s. Only the agents i and j, their connecting edge,
which is related to a local edge-based Q-function Qij , and some outgoing edges are
depicted. The right part of the figure shows the same structure for state s′. Following
(4.8), a local Q-function Qij is directly updated based on the received reward of the
involved agents and the maximizing local Q-function Qij in the next state.

Agent-based update

In the edge-based update method the reward is divided proportionally over the dif-
ferent edges of an agent. All other terms are completely local and only correspond to
the local Q-function Qij of the edge that is updated. A different approach is to first
compute the temporal-difference error per agent and divide this value over the edges.

4.3. SPARSE COOPERATIVE Q-LEARNING 63

Qij Qij

s s′

Ri

Rj

ii

jj

(a) Edge-based update.

QijQij

s s′

ii

jj

Ri

Rj

∑∑

∑

∑

(b) Agent-based update.

Figure 4.2: A graphical representation of the edge-based and agent-based update method
after the transition from state s to s′. See the text for a detailed description.

For this, we first rewrite (4.4) for agent i using (4.6) to

1

2

∑

j∈Γ(i)

Qij(sij , ai, aj) :=

1

2

∑

j∈Γ(i)

[Qij(sij , ai, aj)] + α[Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)]. (4.9)

In order to transfer (4.9) into a local update function, we first rewrite the temporal-
difference error as a summation of the neighbors of agent i, by

Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai) =

∑

j∈Γ(i)

Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)

|Γ(i)| . (4.10)

Note that this summation only decomposes the temporal-difference error into j equal
parts, and thus does not use j explicitly. Because now all summations are identical,
we can decompose (4.9) by removing the sums. Just as in the edge-based update,
there are two agents which update the same local Q-function Qij . When we add the
contributions of the two involved agents i and j, we get the local update equation

Qij(sij , ai, aj) :=

Qij(sij , ai, aj) + α
∑

k∈{i,j}

Rk(s,a) + γQk(s′k,a∗
k) − Qk(sk,ak)

|Γ(k)| . (4.11)

This agent-based update rule propagates back the temporal-difference error from the
two agents which are related to the local Q-function of the edge that is updated, and

64 CHAPTER 4. MULTIAGENT LEARNING

incorporates the information of all edges of these agents. This is different from the
edge-based update method which directly propagates back the temporal-difference
error related to the edge that is updated. This is depicted in Fig. 4.2(b) which shows
the agent-based update. Again, the left part of the figure represents the situation
in state s, and the right part the situation in the next state s′. The edge-based
Q-function Qij is updated based on the local agent-based Q-functions of the two
agents that form the edge. These functions are computed by summing over the local
edge-based Q-functions of all neighboring edges.

Next, we perform several experiments using both the agent-based and the edge-
based decomposition. For the latter, we apply both the agent-based and edge-based
update method, and show the consequences, both in speed and solution quality, of
using the max-plus algorithm as an alternative to the VE algorithm.

4.4 Experiments

We perform different experiments using the methods discussed in Section 4.3 and
four existing multiagent Q-learning variants. We both investigate a large stateless
problem and the distributed sensor network problem that was part of the NIPS 2005
benchmarking workshop. We have chosen these problems because they are both
fully specified and, more importantly, require the selection of a specific combination
of actions at every time step. This is in contrast with other experiments in which
coordination is modeled implicitly through the state variables, that is, each agent is
able to select its optimal action based on only the state variables (for example, its
own and other agents’ positions) and does not have to model the action of the other
agent [Tan, 1993; Guestrin et al., 2002b; Becker et al., 2003].

4.4.1 Stateless problems

Now, we describe several experiments in which a group of n agents have to learn
to take the optimal joint action in a single-state problem. The agents repeatedly
interact with their environment by selecting a joint action. After the execution of a
joint action a, the episode is immediately ended and the system provides each agent
an individual reward Ri(a). The goal of the agents is to select the joint action a
which maximizes R(a) =

∑n

i=1 Ri(a). The local reward Ri received by an agent i
only depends on a subset of the actions of the other agents. These dependencies are
modeled using a graph in which each edge corresponds to a local reward function that
assigns a value r(ai, aj) to each possible action combination of the actions of agent i
and agent j. Each local reward function is fixed beforehand and contains one specific
pair of actions, (ãi, ãj) that results in a high random reward, uniformly distributed
in the range [5, 15], that is, 5 + U([0, 10]). However, failure of coordination, that
is, selecting an action r(ãi, aj) with aj 6= ãj or r(ai, ãj) with ai 6= ãi, will always
result in a reward of 0. All remaining joint actions, r(ai, aj) with ai 6= ãi and
aj 6= ãj , give a default reward drawn from the uniform distribution U([0, 10]). The

4.4. EXPERIMENTS 65

replacements

1

2 3

45

R1 =
∑

j∈Γ(1) r(a1, aj)

r(a1, a2)
r(a1, a3)

r(a1, a4)
r(a1, a5)

(a) Construction of reward R1(a).

action agent j

1 2 3 4

ac
ti

on
ag

en
t

i

1 9.155 0 9.293 0.196

2 7.651 0 2.872 1.287

3 0 12.020 0 0

4 4.536 0 1.581 8.138

(b) Example r(ai, aj) function.

Figure 4.3: Construction of the reward for agent 1 in the single-state problem. (a) The
individual reward R1 is the sum of the rewards r(a1, aj) from the interactions
with its neighbors j ∈ Γ(1) = {2, 3, 4, 5}. (b) Example r(ai, aj) function.

individual reward Ri for an agent i equals the sum of the local rewards resulting
from the interactions with its neighbors, Ri(a) =

∑

j∈Γ(i) r(ai, aj). Fig. 4.3 shows
an example of the construction of the individual reward received by an agent based
on its interaction with its four neighbors, together with an example reward function
r(ai, aj) corresponding to an edge between agent i and agent j.

The goal of the agents is to learn, based on the received individual rewards, to
select a joint action that maximizes the global reward. Although we assume that
the agents know on which other agents it depends, this goal is complicated by two
factors. First, the outcome of a selected action of an agent also depends on the
actions of its neighbors. For example, the agents must coordinate in order to select
the joint action (ãi, ãj) which, in most cases, returns the highest reward. Failure of
coordination, however, results in a low reward. Secondly, because each agent only
receives an individual reward, they are not able to derive which neighbor interaction
caused which part of the reward.

Note that this is a different problem than the problem specified in Section 3.4.
In that problem, it is the goal of the agents to select a joint action which maximizes
predefined payoff functions. In this problem, the payoff relations themselves have to
be learned based on the received rewards.

We perform experiments with 12 agents, each able to perform 4 actions. The
group as a whole thus has 412 ≈ 1.7 · 107, or almost 17 million, different joint actions.
We investigate reward functions with different complexities, and apply the method
described in Section 3.4 to randomly generate 20 graphs G = (V,E) with |V | = 12
for each |E| ∈ {7, 8, . . . , 30}, resulting in a total of 480 graphs, that is, 20 graphs in
each of the 24 groups. The agents of the simplest graphs (7 edges) have an average
degree of 1.16, while the most complex graphs (30 edges) have an average degree
of 5. Fig. 4.4 shows three different example graphs with different average degrees.
Fig. 4.4(a) and (c) depict respectively the minimum and maximal considered average
degree, while Fig. 4.4(b) shows a graph with an average degree of 2.

66 CHAPTER 4. MULTIAGENT LEARNING

(a) A graph with 7 edges (aver-
age degree of 1.16).

(b) A graph with 12 edges (aver-
age degree of 2).

(c) A graph with 30 edges (aver-
age degree of 5.00).

Figure 4.4: Example graphs with 12 agents and different average degrees.

We apply the different variants of our sparse cooperative Q-learning method de-
scribed in Section 4.3 and different existing multiagent Q-learning methods, discussed
in Section 2.3.4 and Section 4.2, to this problem. Since the problem consists of only
a single state, all Q-learning methods store Q-functions based on actions only. We
assume that the agents have access to a CG which for each agent specifies on which
other agents it depends. This CG is identical to the topology of the graph that is used
to generate the reward function. Apart from the different Q-learning methods, we
also apply an approach that selects a joint action uniformly at random, and a method
that enumerates all possible joint actions and stores the one with the highest reward.
To summarize, we now review the main characteristics of all applied methods:

Independent learners (IL) Each agent stores a local Q-function Qi(ai) which only
depends on its own action. Agent i uses its private reward Ri to perform the
update according to (2.14). In order to select an action, each agent selects the
action that maximizes its own local Q-function Qi.

Distributed value functions (DVF) Each agent i stores a local Q-function based
on its own action, and an update incorporates the Q-functions of its neighbors
following (2.15). For stateless problems, as the ones in this section, the Q-value
of the next state is not used and this method is identical to IL.

Coordinated reinforcement learning (CoordRL) Each agent i stores an indi-
vidual Q-function based on its own action and the actions of its neighbors
j ∈ Γ(i). Each function is updated based on the global temporal-difference
error using the update equation in (4.2). This representation scales exponen-
tially with the number of neighbors. VE is used to determine the optimal joint
action which scales exponentially with the induced width of the graph.

Sparse cooperative Q-learning, agent-based (SparseQ agent) Each agent in
the graph stores a Q-function based on its own action and the actions of its

4.4. EXPERIMENTS 67

neighbors j ∈ Γ(i). A function is updated based on the local temporal-difference
error following (4.4). The representation and computational complexity are
similar to those of the CoordRL approach.

Sparse cooperative Q-learning, edge-based (SparseQ edge) Each edge in the
used CG is associated with a Q-function based on the actions of the two con-
nected agents. We apply both the edge-based update method (SparseQ edge,
edge) from (4.8) which updates a Q-function based on the value of the edge
that is updated, and the agent-based update method (SparseQ edge, agent)
from (4.11), which updates a Q-function based on the local Q-functions of the
agents forming the edge.

The two update methods are combined with both the VE algorithm and the
anytime max-plus algorithm to compute the optimal joint action, resulting in
four different methods in total. The max-plus algorithm generates a result when
either the messages converge, the best joint action has not improved for 5 itera-
tions, or more than 20 iterations are performed. The latter number of iterations
is obtained by comparing the problem under study with the coordination prob-
lem from Section 3.4.2. Both problem sizes are similar, and we can conclude
from Fig. 3.9 that a good performance is obtained after 20 iterations.

Random method In this method each agent always performs an action selected
uniformly at random.

Enumeration In order to compare the quality of the different methods, we compute
the optimal value by trying every possible joint action and store the one which
results in the highest reward. This requires an enumeration over all possible joint
actions. Note that this approach does not perform any updates, and quickly
becomes intractable for problems larger than the one addressed here.

We do not apply the MDP learners approach since it would take too long to find
a solution. First, it requires an enumeration over 412 (≈ 17 million) actions at every
time step. Secondly, assuming there is only one optimal joint action, the probability
to actually find the optimal joint action is negligible. An exploration action should
be made (probability ǫ), and this exploration action should equal the optimal joint
action (probability of 1

412).
Table 4.1 shows the average number of Q-values required by each of the three

types of decompositions. The numbers are based on the generated graphs and aver-
aged over similarly shaped graphs. Note the exponential growth in the agent-based
decomposition that is used in both the CoordRL and agent-based SparseQ approach.
We run each method on this problem for 15, 000 learning cycles. Each learning cycle is
directly followed by a test cycle in which the reward related to the current greedy joint
action is computed. The values from the test cycles, thus without exploration, are
used to compare the performance between the different methods. For all Q-learning
variants, the Q-values are initialized to zero and the parameters are set to α = 0.2,
ǫ = 0.2, and γ = 0.9.

68 CHAPTER 4. MULTIAGENT LEARNING

method (1, 2] (2, 3] (3, 4] (4, 5]

IL/DVF 48 48 48 48

edge-based 152 248 344 440

agent-based 528 2,112 8,448 33,792

Table 4.1: Average number of Q-values needed for the different decompositions for graphs
with an average degree in (x − 1, x].

Fig. 4.5 shows the timing results for all methods.1 The x-axis depicts the average
degree of the graph. The y-axis, shown in logarithmic scale, depicts the corresponding
average number of seconds spent in the 15, 000 learning cycles on graphs with a similar
average degree. For the enumeration method it represents the time needed to compute
the reward of every possible joint action.

The results show that the random and IL/DVF approach are the quickest and
take less than a second to complete. In the IL/DVF method each agent only stores
functions based on its individual action and is thus constant in the number of depen-
dencies in the graph. Note that the time increase in the random approach for graphs
with a higher average degree is caused by the fact that more local reward functions
have to be enumerated in order to compute the reward. This occurs in all methods,
but is especially visible in the curve of the random approach since for this method
the small absolute increase is relatively large with respect to its computation time.

The CoordRL and the agent-based SparseQ method scale exponentially with the
increase of the average degree, both in their representation of the local Q-functions
and the computation of the optimal joint action using the VE algorithm. The curves
of these methods overlap in Fig. 4.5. Because these methods need a very long time,
more than a day, to process graphs with a higher average degree than 3, the results for
graphs with more than 18 edges are not computed. The edge-based decompositions do
not suffer from the exponential growth in the representation of the local Q-functions.
However, this approach still grows exponentially with an increase of the average degree
when the VE algorithm is used to compute the maximizing joint action. This holds
for both the agent-based and edge-based update method, which overlap in the graph.
When the anytime max-plus algorithm is applied to compute the joint action both the
representation of the Q-function and the computation of the joint action scale linearly
with an increasing average degree. The agent-based update method is slightly slower
than the edge-based update method because the first incorporates the neighboring
Q-functions in its update (4.11), and therefore the values in the Q-functions are less
distinct. As a consequence, the max-plus algorithm needs more iterations in an update
step to find the maximizing joint action.

Finally, the enumeration method shows a slight increase in the computation time
with an increase of the average degree because, as stated earlier, it has to sum over
more local functions for the denser graphs in order to compute the associated value.

1All results are generated on an Intel Xeon 3.4GHz / 2GB machine using a C++ implementation.

4.4. EXPERIMENTS 69

1 2 3 4 5

10
0

10
2

10
4

CoordRL
SparseQ agent (VE)
SparseQ edge, edge (VE)
SparseQ edge, agent (VE)
SparseQ edge, agent (anytime)
SparseQ edge, edge (anytime)
Enumerate
IL/DVF
Random

average degree

ti
m

e
(s

)

Figure 4.5: Timing results for the different methods applied to the single-state problems
with 12 agents and an increasing number of edges. The results overlap for the
CoordRL and the agent-based SparseQ decomposition, and the two edge-based
decompositions using the VE algorithm.

Note that the problem size was chosen such that the enumeration method was able
to produce a result for all different graphs.

Fig. 4.6 shows the corresponding performance for the most relevant methods.
Each figure depicts the running average, of the last 10 cycles, of the obtained reward
relative to the optimal reward, determined using the enumeration method, for the
first 15, 000 cycles. Results are grouped for graphs with a similar complexity, that is,
having about the same number of edges per graph.

Fig. 4.6(a) depicts the results for the simplest graphs with an average degree less
than or equal to 2. We do not show the results for the random and CoordRL approach
since they are not able to learn a good policy and quickly stabilize around 41% of
the optimal value. The CoordRL approach updates each local Q-function with the
global temporal-difference error. Therefore, the same global reward is propagated to
each of the individual Q-functions and the expected future discounted return, that is,
the sum of the local Q-functions, is overestimated. As a result the Q-values blow up,
resulting in random behavior.

The IL/DVF approach learns a reasonable solution, but it suffers from the fact
that each agent individually updates its Q-value irrespective of the actions performed
by its neighbors. Therefore, the agents are not able to learn coordinated actions and
the policy keeps oscillating.

70 CHAPTER 4. MULTIAGENT LEARNING

0 5000 10000 15000

0.85

0.9

0.95

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ agent−based (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (anytime)
IL/DVF

(a) Average degree less than 2.

0 5000 10000 15000

0.85

0.9

0.95

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ agent−based (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (anytime)
IL/DVF

(b) Average degree between 2 and 3.

0 5000 10000 15000

0.85

0.9

0.95

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based edge updates (anytime)
IL/DVF

(c) Average degree between 3 and 4.

0 5000 10000 15000

0.85

0.9

0.95

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based edge updates (anytime)
IL/DVF

(d) Average degree between 4 and 5.

Figure 4.6: Running average, of the last 10 cycles, of the reward relative to the optimal
reward for the most relevant methods on the single-state, 12-agent problems.

The agent-based SparseQ decomposition converges to an optimal policy since it
stores a Q-value for every action combination of its neighbors, and is able to detect
the best performing action combination. However, this approach learns slower than
the different edge-based decompositions since it requires, as listed in Table 4.1, more
samples to update the large number of Q-values. The two edge-based decompositions
using the anytime extension both learn a near-optimal solution. The agent-based
update method performs slightly better since it, indirectly, includes the neighboring
Q-values in its update rule.

As is seen in Fig. 4.6(b), the results are similar for the more complicated graphs
with an average degree between 2 and 3. Although not shown, the random policy and
CoordRL learners are not able to learn a good policy and quickly stabilize around 44%
of the optimal value. On the other hand, the agent-based decomposition converges to
the optimal policy. Although the final result is slightly worse compared to the simpler

4.4. EXPERIMENTS 71

0 5000 10000 15000
0.88

0.9

0.92

0.94

0.96

0.98

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (VE)
SparseQ edge−based, edge updates (anytime)

(a) Average degree less than 2.

0 5000 10000 15000
0.88

0.9

0.92

0.94

0.96

0.98

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (VE)
SparseQ edge−based, edge updates (anytime)

(b) Average degree between 2 and 3.

0 5000 10000 15000
0.88

0.9

0.92

0.94

0.96

0.98

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (VE)
SparseQ edge−based, edge updates (anytime)

(c) Average degree between 3 and 4.

0 5000 10000 15000
0.88

0.9

0.92

0.94

0.96

0.98

1

time steps

av
g.

 r
ew

ar
d

/ m
ax

. r
ew

ar
d

Optimal
SparseQ edge−based, agent updates (VE)
SparseQ edge−based, agent updates (anytime)
SparseQ edge−based, edge updates (VE)
SparseQ edge−based, edge updates (anytime)

(d) Average degree between 4 and 5.

Figure 4.7: Running average of the received reward relative to the optimal reward for the
different edge-based methods, using either the VE or anytime algorithm, on
the single-state, 12-agent problem.

graphs, the edge-based decompositions still learn near-optimal policies. The result of
the agent-based update method is better than the edge-based update method since
the first includes the neighboring Q-values in its update rule.

Similar results are also visible in Fig. 4.6(c) and Fig. 4.6(d), with respectively an
average degree between 3 and 4, and between 4 and 5. The agent-based decomposi-
tions are not applied to these graphs. As was already visible in Fig. 4.5, the algorithm
needs too much time to process graphs of this complexity.

Fig. 4.7 compares the difference between using either the VE or the anytime
max-plus algorithm to compute the joint action for the SparseQ methods using an
edge-based decomposition. Fig. 4.7(a) and Fig. 4.7(b) show that the difference be-
tween the two approaches is negligible for the graphs with an average degree less
than 3. However, for the more complex graphs (Fig. 4.7(c) and Fig. 4.7(d)) there is

72 CHAPTER 4. MULTIAGENT LEARNING

method (1, 2] (2, 3] (3, 4] (4, 5]

Random 0.4272 0.4421 0.4477 0.4513

IL 0.8696 0.8571 0.8474 0.8372

CoordRL 0.4113 0.4423 - -

SparseQ agent (VE) 1.0000 0.9983 - -

SparseQ edge, agent (VE) 0.9917 0.9841 0.9797 0.9765

SparseQ edge, edge (VE) 0.9843 0.9614 0.9416 0.9264

SparseQ edge, agent (anytime) 0.9906 0.9815 0.9722 0.9648

SparseQ edge, edge (anytime) 0.9856 0.9631 0.9419 0.9263

Table 4.2: Relative reward with respect to the optimal reward after 15, 000 cycles for the
different methods and differently shaped graphs. Results are averaged over
graphs with an average degree in (x− 1, x], as indicated by the column headers.

a small performance gain when the VE algorithm is used for the agent-based update
method. The agent-based update method incorporates the neighboring Q-functions,
and therefore the values of the Q-functions are less distinct. As a result, the max-plus
algorithm has more difficulty in finding the optimal joint action. But note that, as
was shown in Fig. 4.5, the VE algorithm requires substantially more computation
time for graphs of this complexity than the anytime max-plus algorithm.

Table 4.2 gives an overview of all results and compares the value of the joint
action corresponding to the learned strategy in cycle 15, 000 for the different meth-
ods. Although the results slowly decrease for the more complex reward functions, all
SparseQ methods learn near-optimal policies. Furthermore, there is only a minimal
difference between the methods that use the VE and the anytime max-plus algorithm
to compute the joint action. For the densely connected graphs, the edge-based de-
compositions in combination with the max-plus algorithm are the only methods that
are able to compute a good solution. The algorithms using VE fail to produce a
result because of their inability to cope with the complexity of the underlying graph
structure (see Section 3.4).

4.4.2 Distributed sensor network

We also perform experiments on a distributed sensor network (DSN). This problem is a
sequential decision-making variant of the distributed constraint optimization problem
in Ali et al. [2005]. It was part of the NIPS 2005 benchmarking workshop.2

The DSN problem consists of two parallel chains of an arbitrary, but equal, number
of sensors. The area between the sensors is divided into cells. Each cell is surrounded
by exactly four sensors and can be occupied by a target. See Fig. 4.8(a) for a config-

2See http://www.cs.rutgers.edu/∼mlittman/topics/nips05-mdp/ for a detailed description of
the benchmarking event and http://rlai.cs.ualberta.ca/RLBB/ for the used RL-framework.

http://www.cs.rutgers.edu/~mlittman/topics/nips05-mdp/
http://rlai.cs.ualberta.ca/RLBB/

4.4. EXPERIMENTS 73

(a) Network configuration. (b) Network with corresponding CG.

Figure 4.8: Fig. 4.8(a) shows an sensor network with eight sensors (
N

) and two targets (•).
Fig. 4.8(b) shows the corresponding CG representing the agent dependencies.
This graph has an average degree of 4, and an induced width of 3.

uration with eight sensors and two targets. With equal probability a target moves to
the cell on its left, to the cell on its right, or remains on its current position. Actions
that move a target to an illegal position, that is, an occupied cell or a cell outside the
grid, are not executed.

Each sensor is able to perform three actions: focus on a target in the cell to its
immediate left, to its immediate right, or don’t focus at all. Every focus action has
a small cost modeled as a reward of −1. When in one time step at least three of
the four surrounding sensors focus on a target, it is ‘hit’. Each target starts with a
default energy level of three. Each time a target is hit its energy level is decreased by
one. When it reaches zero the target is captured and removed, and the three sensors
involved in the capture each receive a reward of +10. In case four sensors are involved
in a capture, only the three sensors with the highest index receive the reward. An
episode finishes when all targets are captured. The sensors thus have to coordinate
their actions in order to hit, and eventually capture, a target.

We will perform experiments on the same configuration of the DSN problem as
was used in the NIPS-05 benchmarking event. In this event, eight sensors and two
targets were used, resulting in 38 = 6, 561 joint actions and 37 distinct states, that is,
9 states for each of the 3 configurations with 2 targets, 9 for those with one target,
and 1 for those without any targets. This problem thus has a large action space
compared to its state space. When acting optimally, the sensors are able to capture
both targets in three steps, resulting in a cumulative reward of 42. However, in order
to learn this policy based on the received rewards, the agents have to be able to cope
with the delayed reward and learn how to coordinate their actions such that multiple
targets are hit simultaneously.

In our experiments we generate all statistics using the benchmark implementa-
tion. However, we made two small changes to the implementation. First, because
the implementation used in NIPS-05 only returns the global reward, we changed the
environment to return the individual rewards in order to comply to our model speci-
fication. Second, we set the fixed seed of the random number generator to a variable
seed based on the current time in order to be able to perform varying runs.

74 CHAPTER 4. MULTIAGENT LEARNING

0 50 100 150 200
−10

−5

0

5

10

15

20

25

30

35

40

episode block

av
er

ag
e

re
w

ar
d

Optimal
SparseQ edge, edge (anytime)
SparseQ agent (VE)
SparseQ edge, agent (anytime)
MDP
DVF
IL

(a) Average reward.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

episode block

av
er

ag
e

nr
. o

f s
te

ps

Optimal
SparseQ edge, edge (anytime)
SparseQ agent (VE)
SparseQ edge, agent (anytime)
MDP
DVF
IL

(b) Average number of steps.

0 50 100 150 200

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

episode block

cu
m

ul
at

iv
e

av
er

ag
e

re
w

ar
d

Optimal
SparseQ edge, edge (anytime)
SparseQ agent (VE)
SparseQ edge, agent (anytime)
MDP
DVF
IL

(c) Cumulative average reward.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

episode block

cu
m

ul
at

iv
e

tim
e

(s
)

Optimal
SparseQ edge, edge (anytime)
SparseQ agent (VE)
SparseQ edge, agent (anytime)
MDP
DVF
IL

(d) Cumulative time.

Figure 4.9: Different results on the DSN problem, averaged over 10 runs. One run consists
of 200 episode blocks, each corresponding to 50 learning episodes.

We apply the different techniques described in Section 2.3.4 and Section 4.3 to the
DSN problem. We do not apply the CoordRL approach, since, just as in the exper-
iments in Section 4.4.1, it propagates back too much reward causing the individual
Q-functions to blow up. However, we do apply the MDP learners approach which
updates a Q-function based on the full joint action space. All applied methods learn
for 10, 000 episodes which are divided into 200 episode blocks, each consisting of 50
episodes. The following statistics are computed at the end of each episode block: the
average reward, that is, the undiscounted sum of rewards divided by the number of
episodes in an episode block, the cumulative average reward of all previous episode
blocks, and the wall-clock time. There is no distinction between learning and testing
cycles, and the received reward thus includes exploration actions. The Q-learning
methods all use the following parameters: α = 0.2, ǫ = 0.2, and γ = 0.9, and start
with zero-valued Q-values. We assume that both the DVF and the different SparseQ

4.4. EXPERIMENTS 75

method reward steps method reward steps

Optimal 38.454 3.752 SparseQ edge, edge (anytime) 27.692 8.795

MDP 19.061 7.071 SparseQ edge, edge (VE) 28.880 8.113

DVF 16.962 22.437 SparseQ agent (VE) 24.844 6.378

IL 6.025 31.131 SparseQ edge, agent (VE) 25.767 8.413

SparseQ edge, agent (anytime) 23.738 8.930

Table 4.3: Average reward and average number of steps per episode over the last 2 episode
blocks (100 episodes) for the DSN problem. Results are averaged over 10 runs.

variants have access to a CG which specifies for each agent on which other agents it
depends. This CG is shown in Fig. 4.8(b), and has an average degree of 4.

The results, averaged over 10 runs with different random seeds, for the different
techniques are shown in Fig. 4.9. The results contain exploration actions and are
therefore not completely stable. For this reason, we show the running average over
the last 10 episode blocks. Fig. 4.9(a) shows the average reward for the different
approaches. The optimal policy is manually implemented and, in order to have a
fair comparison with the other approaches, also includes random exploration actions
with probability ǫ. It results in an average reward just below 40. The MDP approach
settles to an average reward around 17 after a few episodes. Although this value
is low compared to the result of the optimal policy, the MDP approach, as seen in
Fig. 4.9(b), does learn to capture the targets in a small number of steps. From this we
conclude that the low reward is mainly a result of unnecessary focus actions performed
by the agents that are not involved in the actual capture. The MDP approach thus
discovers one of the many possible joint actions that results in a capture of the target
and the generation of a positive reward, and then exploits this strategy. However, the
found joint action is non-optimal since one or more agents do not have to focus in
order to capture the target. Because of the large action space and the delayed reward,
it takes the MDP approach much more than 10, 000 episodes to learn that other joint
actions result in a higher reward.

Although the DVF approach performs better than IL, both methods do not con-
verge to a stable policy and keep oscillating. This is caused by the fact that both
approaches store action values based on individual actions and therefore fail to select
coordinated joint actions which are needed to capture the targets.

In the different SparseQ variants each agent stores and updates local Q-values.
Since these are also based on the agent’s neighbors in the graph, the agents are able
to learn coordinated actions. Furthermore, the explicit coordination results in much
more stable policies than the IL and DVF approach. The agent-based decomposition
produces a slightly lower average reward than the edge-based decompositions, but,
as shown in Fig. 4.9(b), it needs less steps to capture the targets. Identical to the
MDP approach, the lower reward obtained by the agent-based decomposition is a
consequence of the large action space involved in each local term. As a result the

76 CHAPTER 4. MULTIAGENT LEARNING

0 50 100 150 200
−10

−5

0

5

10

15

20

25

30

35

40

episode block

av
er

ag
e

re
w

ar
d

Optimal
SparseQ edge, edge (anytime)
SparseQ edge, edge (VE)
SparseQ edge, agent (VE)
SparseQ edge, agent (anytime)

(a) Average reward.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

episode block

cu
m

ul
at

iv
e

tim
e

(s
)

Optimal
SparseQ edge, edge (anytime)
SparseQ edge, edge (VE)
SparseQ edge, agent (VE)
SparseQ edge, agent (anytime)

(b) Cumulative time.

Figure 4.10: Results of the edge-based decomposition methods on the DSN problem, aver-
aged over 10 runs. One run consists of 200 episode blocks, each corresponding
to 50 learning episodes.

agents are able to quickly learn a good policy that captures the targets in a few
steps, but it takes a long time to converge to a joint action that does not involve the
unnecessary focus actions of some of the agents. For example, each of the four agents
in the middle of the DSN coordinates with 5 other agents, and each of them thus
stores a Q-function defined over 36 = 729 actions per state. Because in the agent-
based decomposition the full action space is decomposed into different independent
local action values, it does result in a better performance than the MDP learners, both
in the obtained average reward and the number of steps needed to capture the targets.
With respect to the two edge-based decompositions, the edge-based update method
generates a slightly higher reward, and a more stable behavior than the agent-based
update method for this particular problem.

Fig. 4.9(c) shows the cumulative average reward of the different methods. Ignoring
the manual policy, the edge-based update methods result in the highest cumulative
average reward. This is also seen in Table 4.3 which shows the reward and the num-
ber of steps per episode averaged over the last 2 episode blocks, that is, 100 episodes,
for the different methods. Since the goal of the agents is to optimize the received
average reward, the SparseQ methods outperform the other learning methods. How-
ever, none of the variants converge to the optimal policy. One of the main reasons
is the large number of dependencies between the agents. This requires a choice be-
tween an approach that models many of the dependencies but learns slowly because
of the exploration of a large action space, for example, the agent-based SparseQ or
the MDP learners, or an approach that ignores some of the dependencies but is able
to learn an approximate solution quickly. The latter is the approach taken by the
edge-based SparseQ variants: it models pairwise dependencies even though it requires
three agents to capture a target.

4.5. DISCUSSION 77

Fig. 4.9(d) gives the timing results for the different methods. The IL and DVF
methods are the fastest methods since they only store and update individual Q-
values. The agent-based SparseQ method is by far the slowest. This method stores a
Q-function based on all action combinations of an agent and its neighbors in the CG.
This slows down the VE algorithm considerably since it has to maximize over a large
number of possible joint action combinations in every local maximization step.

Finally, Fig. 4.10 compares the difference between using the VE or the anytime
max-plus algorithm to compute the joint action for the SparseQ methods using an
edge-based decomposition. Fig. 4.10(a) shows that there is no significant difference in
the obtained reward for these two methods. Fig. 4.10(b) shows that the edge-based
SparseQ variants that use the anytime max-plus algorithm need less computation time
than those using the VE algorithm. However, the differences are not that evident as
in the experiments from Section 4.4.1 because the used CG has a relative simple
structure, that is, it has an induced width of 3, and VE is able to quickly find a
solution when iteratively eliminating the nodes with the smallest degree.

4.5 Discussion

In this chapter, we presented different model-free reinforcement-learning variants to
learn the coordinated behavior of the agents in a collaborative multiagent system. In
our sparse cooperative Q-learning (SparseQ) methods, we approximate the global Q-
function using a coordination graph (CG) representing the coordination requirements
of the system. We analyzed two possible decompositions: one in terms of the nodes
and one in terms of the edges of the graph. During learning, each local Q-function
is updated based on its contribution to the maximal global action value found with
either the variable elimination (VE) or max-plus algorithm. Effectively, each agent
learns its part of the global solution by only coordinating with the agents on which it
depends. Results on both a stateless problem with 12 agents and more than 17 million
actions, and a distributed sensor network problem indicate that our SparseQ variants
outperform other existing multiagent Q-learning methods. Furthermore, these meth-
ods only require that each agent is able to communicate with its neighbors in the
graph and can be implemented fully distributed.

An important choice in all SparseQ methods is the used topology of the CG to
represent the action value. This structure should resemble the dependencies of the
problem under study. For a given CG, another choice is to use either a decomposition
of the action value based on the nodes or edges of the graph. The agent-based decom-
position takes all agent dependencies into account and therefore results in a better
performance. However, the space complexity of this approach scales exponentially
with the number of dependencies because each agent stores a Q-function for every ac-
tion combination of its neighbors in the graph. This results in exploration difficulties
for larger problems. Furthermore, the computational complexity of the agent-based
decomposition grows exponentially with the induced width of the graph as a result
of the VE method that is needed to compute the optimal joint action. Therefore,

78 CHAPTER 4. MULTIAGENT LEARNING

for large problems with many dependencies an edge-based decomposition can be used
which only stores action values based on pairwise dependencies. In combination with
the max-plus algorithm, this approach scales only linearly in the number of dependen-
cies of the problem. Although this method ignores the full joint action dependencies
by representing them as a sum of pairwise dependencies, we have shown that this
approach results in good policies and outperform other alternatives.

In all described methods, the dependencies of the agents are the same in every
state. However, in many cases the dependencies differ based on the situation. A
soccer player, for example, often coordinates with all players during a game, but at
a particular instance it only has to coordinate with one or two other players. In our
current representation, we have to construct a graph in which all agents depend on
each other, and the complete graph has to be used in every state. In the next chapter
we therefore consider an alternative approach in which the dependencies between the
agents can change based on the current situation.

5

Context-Specific Multiagent Learning

In this chapter we focus on learning the behavior of a group of agents in multiagent se-
quential decision-making problems when the dependencies between the agents change
based on the context. We first learn the behavior using our sparse tabular multi-
agent Q-learning algorithm in which, depending on the context, either all or none
of the agents coordinate their actions [Kok and Vlassis, 2004b]. Then, we present
our context-specific sparse cooperative Q-learning approach [Kok and Vlassis, 2004a],
which models the dependencies between subsets of agents using a context-specific co-
ordination graph that changes based on the current situation [Guestrin et al., 2002c].
Although both approaches result in large savings in the state-action representation,
they assume the dependencies are known beforehand. Therefore, we also describe our
utile coordination approach that learns the coordination dependencies of a system au-
tomatically based on gathered statistics during the learning phase [Kok et al., 2005a].
Finally, we perform experiments on the ‘predator-prey’ domain and show that we are
able to learn coordinated policies in environments with changing dependencies.

5.1 Introduction

In Chapter 4 we described how an agent in a multiagent sequential decision-making
problem is able to learn its behavior by only considering the actions of the agents
on which it depends. These coordination dependencies are represented using a co-
ordination graph (CG) that is the same for every state. Although this is applicable
for agents in a static configuration, agents in dynamic problems often only depend
on each other in a specific context. For example, two cleaning robots only have to
coordinate their actions when they are cleaning the same room; in all other situations
they can act independently. In the case of a fixed CG the dependencies between the
agents have to be modeled in every state, resulting in dense CGs for problems in which
the agents have to coordinate with many different agents. For example, each agent
in a robot soccer team can potentially interact with any other agent on the soccer
field and therefore a CG has to be constructed in which all agents are connected.
However, in many of the possible situations the soccer agents are too far away from
each to directly coordinate their actions, and the modeled dependencies are superflu-
ous. In this chapter, we therefore present different multiagent reinforcement-learning
methods in which the coordination dependencies can differ between states. We both

80 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

investigate how a group of agents can learn to jointly solve a task when the coordina-
tion requirements for the state of the system are given beforehand, and the situation
in which these dependencies are not available.

We present two different approaches for the situation in which the coordination
dependencies are specified beforehand. First, we introduce sparse tabular multia-
gent Q-learning, a method that creates a compact representation of the global action
value by distinguishing between two different types of states. In a predefined set of
coordinated states all agents coordinate their actions, and the global action value is
modeled based on joint actions. In all other, uncoordinated, states, the global action
value is decomposed over the different agents, and each agent learns independently.
Secondly, we present context-specific sparse cooperative Q-learning which generalizes
this approach by using a context-specific coordination graph (context-specific CG)
[Guestrin et al., 2002c] to model the global action value. Such a graph is defined in
terms of value rules which represent the value for a specific state-action combination.
This has the advantage that specific action combinations between any subset of the
agents can be modeled. Furthermore, in case of a factorized state representation,
each dependency can be associated with a specific assignment to a subset of all state
variables. This results in a compact representation of the complete state-action space.
It is not possible to take advantage of a factorized state representation in our sparse
tabular multiagent Q-learning approach because all states have to be mutually exclu-
sive. Finally, to update the values of the value rules, we extend the sparse cooperative
Q-learning, or SparseQ, approach, described in Chapter 4, to a context-specific CG.

We also describe a method to learn the coordination dependencies of an agent in
a specific context automatically. The approach taken is to start with independent
learners and maintain statistics on expected returns based on the actions of the other
agents. If the statistics indicate that it is beneficial to coordinate, a dependency is
added dynamically. This method is inspired by the ‘utile distinction’ methods from
single-agent reinforcement learning that augment the state space when this distinc-
tion helps the agent predict reward [Chapman and Kaelbling, 1991; McCallum, 1997].
Hence, our method is called the utile coordination algorithm.

We apply our techniques on the ‘predator-prey’ domain, a popular multiagent
problem in which a number of predator agents try to capture a prey [Benda et al.,
1986; Kok and Vlassis, 2003]. Compared to other multiagent reinforcement-learning
techniques, our approach achieves a good trade-off between speed and solution quality,
and is able to learn the coordination dependencies of the system automatically.

The remainder of this chapter is structured as follows. In Section 5.2 we review
the concept of a context-specific CG. In Section 5.3 we describe our sparse tabular
multiagent Q-learning approach in which the agents either act jointly or indepen-
dently for a specific situation. In Section 5.3 we extend our SparseQ approach from
Chapter 4 and model the global action value using a context-specific CG, and pro-
vide experiments in the predator-prey domain when the coordination dependencies
are specified beforehand. In Section 5.4, we describe our utile coordination approach
to learn the dependencies of the system automatically, and test it on a small problem
and the predator-prey domain. Finally, we end with some conclusions in Section 5.5.

5.2. CONTEXT-SPECIFIC COORDINATION GRAPHS 81

5.2 Context-specific coordination graphs

In this section, we review the framework of a context-specific coordination graph
(context-specific CG) [Guestrin et al., 2002c], which represents a dynamic, context-
dependent set of coordination requirements in a multiagent system. Just as a standard
CG, described in Section 3.2, a context-specific CG consists of nodes that represent
agents, and edges that define the dependencies between the agents. In a standard
CG each dependency corresponds to a function, often specified as a table or a matrix,
which returns the value for every action combination of the involved agents. In a
context-specific CG the dependencies between the agents are specified using value
rules. These are propositional rules in the form

〈 ρ ; c : v 〉, (5.1)

where the context c ∈ C ⊆ S ∪ A is an element from the set of all combinations of
the state variables S and action variables A, and ρ(x) = v ∈ R is the value that is
obtained when x ∈ X ⊆ S ∪ A is consistent with c, that is, c and x have the same
assignment for their shared variables C ∩ X. When c and x are not consistent the
rule is not applicable, and its value is 0. Because we use value rules to represent
action values that distinguish between the state variables s and action variables a for
a context c = s ∪ a, we often use ρ(s,a) instead of ρ(c) to the value of a rule.

A rule-based function f : C → R consists of a set of m value rules {ρ1, . . . , ρm}.
For a specific state-action combination x, the sum of the values of all applicable rules
consistent with x defines the corresponding global value, that is,

f(x) =

m
∑

j=1

ρj(x). (5.2)

A graphical representation of a context-specific CG is constructed by connecting
all agents whose actions appear in the context c of a value rule ρj(c). For example,
the left graph in Fig. 5.1 shows a CG for a 4-agent problem. The dependencies
between the agents are derived from the five value rules depicted below this figure.
The superscript and subscript in each value rule ρi

j represent respectively the agent
to which this value rule belongs and the index of the value rule in its set. Agents
involved in the same rule are automatically neighbors in the graph. For simplicity
all actions and state variables in this example are assumed binary, that is, action a1

corresponds to a1 = true and action a1 to a1 = false.

The value rules in a context-specific CG incorporate the state information in which
the rule is applicable. This is a richer representation than a standard CG in which
a separate table has to be defined for every state. It is also a richer representation
than the tree-structured functions defined by Boutilier et al. [2000]. In that work, a
node resembles a state variable and its branches relate to the possible assignments of
that variable. For a given assignment of state variables, the path from the root to one
specific leaf can be followed. The value associated with this specific leaf corresponds

82 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

11 1

2 2 23 3

4

〈 ρ1

1 ; a1 ∧ a3 ∧ s : 4 〉

〈 ρ1

2 ; a1 ∧ a2 ∧ s : 5 〉

〈 ρ2

1 ; a2 ∧ s : 2 〉

〈 ρ3

1 ; a3 ∧ a2 ∧ s : 5 〉

〈 ρ4

1 ; a3 ∧ a4 ∧ s : 10 〉

〈 ρ1

1 ; a1 ∧ a3 : 4 〉

〈 ρ1

2 ; a1 ∧ a2 : 5 〉

〈 ρ2

1 ; a2 : 2 〉

〈 ρ3

1 ; a3 ∧ a2 : 5 〉

〈 ρ1

2 ; a1 ∧ a2 : 5 〉

〈 ρ2

1 ; a2 : 2 〉

〈 ρ2

2 ; a2 : 5 〉

〈 ρ1

3 ; a2 ∧ a1 : 4 〉

Figure 5.1: Initial context-specific CG (left), after conditioning on the context s = true

(center), and after elimination of agent 3 (right).

to the value for the current situation. When state variables are independent only a
subset of the state variables appear in each path. This results in savings in the value-
function representation because many combinations can be ignored. A restriction of
this framework, however, is that all paths are mutually exclusive and exhaustive, a
requirement that is not required in the case of value rules.

In order to compute an optimal joint action a∗ that maximizes the total value in
a context-specific CG for a specific situation, a variable elimination (VE) algorithm
similar to the one described in Section 3.2 can be applied Guestrin [2003, ch. 9]. The
main difference is that the elimination of an agent in a context-specific CG involves the
manipulation of rules which is a more complex operation than the maximization in the
table-based VE variant. We illustrate the rule-based VE on the example of Fig. 5.1.
The first step of the algorithm is to condition on the context, for example, s = true,
and remove all rules that are not applicable. In our example this results in the removal
of ρ4

1 and the updated CG depicted in the center of Fig. 5.1. Then, the agents are one
by one eliminated from the graph. Let us assume that we first eliminate agent 3. This
agent collects all rules in which it is involved, that is, 〈 ρ1

1 ; a1∧a3 : 4 〉〈 ρ3
1 ; a3∧a2 : 5 〉.

Next, agent 3 computes a conditional value function, which returns the maximal value
agent 3 can contribute to the system for all possible actions of agent 1 and agent 2.
This function equals 〈 ρ2

2 ; a2 : 5 〉〈 ρ1
3 ; a2 ∧ a1 : 4 〉. When agent 2 performs action a2,

it is always best for agent 3 to perform action a3 since this always results in the
highest possible value of 5. This result does not depend on the selected action of
agent 1, and its action can therefore be omitted from the resulting rule ρ2

2. In the
case that agent 2 performs action a2, agent 3 is still able to contribute a value of 4
to the system in case agent 1 selects action a1. This situation is depicted in rule ρ1

3.
Note that, because of the dominance of certain action choices, we only have to store
two value rules to represent the four different action combinations of agent 1 and
agent 2. The value-rule representation thus allows for a compact representation.

The best-response function, that is, the corresponding best action of agent 3, can
be represented using a rule in which the value is replaced by the corresponding action

5.2. CONTEXT-SPECIFIC COORDINATION GRAPHS 83

of agent 3. For this example, this results in 〈 a2 : a3 〉〈 a1∧a2 : a3 〉. Thus, when agent 2
selects action a2, agent 3 selects action a3, and when agent 1 and 2 respectively select
actions a1 and a2, agent 3 selects action a3. In the remaining situation, a1 ∧ a2, the
action of agent 3 is not specified since it has no influence on the global value; its
contribution is zero in both cases. After agent 3 has computed its conditional value
function, it is communicated to one of its neighbors, and the topology of the CG
is updated such that all agents involved in this function are connected. Note that
it is possible that a conditional value function does not contain all neighbors of an
eliminated agent since the actions of one, or more, of the neighbors are dominated
by the actions of the other agents. This results in a speedup for the rule-based VE
because the number of generated rules is never larger and in many cases exponentially
smaller than the table-based VE. The CG after the elimination of agent 3 is depicted
in the right figure of Fig. 5.1. The algorithm continues with the elimination of the
next agent, for example, agent 2. First it computes its conditional value function
〈 ρ1

4 ; a1 : 11 〉〈 ρ1
5 ; a1 : 5 〉, corresponding to respectively the best-response action a2

and a2. Then, it communicates this function to agent 1, and is finally eliminated
from the graph. Agent 1 is the last agent left and fixes its action to a1 since this
corresponds to the maximal obtainable value for the system. Now a second pass in
the reverse order is performed in which each agent computes its final action based on
its best-response function and the fixed actions of its neighbors, and communicates
this action to its neighbors. For our example, this results in the optimal joint action
{a1, a2, a3} with a corresponding global value of 11. The action of agent 4 can be
chosen arbitrarily since it has no influence on the global value.

The set of value rules results in large savings in the representation of the state-
action space since only relevant state and action combinations are defined. However, a
computational disadvantage of this representation is that it involves the management
of rules. This results in a complexer VE algorithm and requires a specialized method
to determine the applicable value rules for a specific state. Therefore, only in problems
with a large amount of context-specific structure the smaller number of rules in the
rule-based VE outweighs the computational advantages of the table-based VE.

Guestrin et al. [2002c] use a context-specific CG to solve multiagent sequential
decision-making problems when the model of the system is known and represented
using a dynamic decision network (DDN) as described in Section 2.3.2. They approx-
imate the global value function as a linear combination of weighted basis functions.
These functions are represented by predefined value rules. Given the known model
dynamics, the weights are learned using a centralized linear programming algorithm.
This approach scales to large state spaces because the structure in the rules allows
for an efficient maximization. After the rule-based value function is learned, it can
then be used online to determine the maximizing joint action for a certain situation.

In this thesis, we assume that the model dynamics are not available, and therefore
represent the global action value directly using the value rules in a context-specific
CG. The values of the rules are updated based on experienced state transitions, using
similar reinforcement-learning techniques as applied in Chapter 4. This results in a
family of model-free learning algorithms that is completely distributed.

84 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

5.3 Context-specific multiagent Q-learning

In this section, we present two multiagent reinforcement-learning techniques to learn
the coordinated behavior of a group of agents that allow the dependencies between
the agents to change based on the current context. First, we examine sparse tabular
multiagent Q-learning, an approach in which, depending on the context, either all
or none of the agents coordinate their actions. Then we generalize this approach by
modeling the global action value using a context-specific CG. This enables us to define,
by means of value rules, coordination dependencies between subsets of agents that
differ based on the specific situation. In order to update the value rules we extend our
SparseQ method described in Chapter 4. Both approaches are applied to an instance
of the predator-prey domain in order to learn the behavior of the predators.

5.3.1 Sparse tabular multiagent Q-learning

Sparse tabular multiagent Q-learning is a reinforcement-learning technique which
models context-specific coordination requirements [Kok and Vlassis, 2004b]. The idea
is to label each state of the system either as a coordinated or an uncoordinated state.
In the coordinated states the agents learn based on joint actions, while in the uncoor-
dinated states they learn independently. More formally, the state space S is divided
into two mutually exclusive sets S+ and S− for which holds, S = S+ ∪ S− and
S+ ∩ S− = ∅. For the states s ∈ S+ the agents have to coordinate their actions,
and therefore they learn joint action values using the MDP learners approach. In the
uncoordinated states s ∈ S− the agents learn independently and apply the indepen-
dent learners (IL) approach. Both techniques are described in Section 2.3.4. Since
in practical problems the agents typically need to coordinate their actions only in
few states, this framework allows for a sparse representation of the complete action
space. Note that this approach is not able to take advantage of a factorized state
representation, because each state has to labeled based on a specific assignment of
all state variables. In the remainder of this section, we therefore assume the state is
specified in terms of a single state variable.

The representation of the global action value Q(s,a) differs depending on the
current context. For the coordinated states s ∈ S+ we directly model the global
Q-function Q(s,a) based on joint actions. For the uncoordinated states s ∈ S−,
however, each agent i maintains a Q-function Qi(s, ai) based on individual actions,
and the global Q-function is the sum of all individual Q-functions, that is,

Q(s,a) =

n
∑

i=1

Qi(s, ai). (5.3)

In order to update a Q-function after a state transition, received in the form of
a (s,a, s′, r) sample, values from differently sized Q-functions have to be combined.
There are four different situations that must be taken into account. When moving
between two coordinated or between two uncoordinated states, we respectively apply

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 85

Q1(s
′, a1)

Q2(s
′, a2)

Q3(s
′, a3)

Q(s,a) Q(s′′,a)

R1(s,a)

R2(s,a)

R3(s,a)

R1(s
′,a)

R2(s
′,a)

R3(s
′,a)

s ∈ S+ s′ ∈ S− s′′ ∈ S+

A1

A2

A3

Figure 5.2: Graphical representation of the Q-tables in the case of three agents A1, A2, and
A3. State s and s′′ are coordinated states, while state s′ is an uncoordinated
state.

the MDP learners and IL approach directly. In the case that the n agents move from
a coordinated state s ∈ S+ to an uncoordinated state s′ ∈ S− we propagate back the
individual Q-values to the joint Q-value using

Q(s,a) := (1 − α)Q(s,a) + α

n
∑

i=1

[

Ri(s,a) + γ max
a′

i

Qi(s
′, a′

i)
]

. (5.4)

We thus add all individual contributions of the n agents to determine the global action
value for the next state s′. When moving from an uncoordinated state s′ ∈ S− to
a coordinated state s′′ ∈ S+ we propagate back the joint Q-value in state s′′ to the
different individual Q-values using

Qi(s
′, ai) := (1 − α)Qi(s

′, ai) + α
[

Ri(s
′,a) + γ

1

n
max
a
′

Q(s′′,a′)
]

. (5.5)

Each agent is thus rewarded with the same fraction of the estimated future discounted
reward from the resulting coordinated state. This implies that we assume each agent
contributes equally to the coordination.

Fig. 5.2 shows a graphical representation of the transition between three states
for a 3-agent problem. In state s ∈ S+ the agents have to coordinate their actions
and use the shared Q-function to select a joint action. After taking a joint action and
observing a transition to the uncoordinated state s′ ∈ S−, the global Q-function is
updated using (5.4). In s′ ∈ S− each agent i chooses its action independently, and
after moving to state s′′ ∈ S+ updates its individual Q-function using (5.5).

In terms of implementation, all Q-functions can be represented using tables since
for every state the number of actions is fixed. For the coordinated states, however,
all agents should either have access to the shared Q-function, for example, by com-
munication with a centralized controller, or every individual agent should update a
local copy identically. In the latter case the agents have to rely on common knowl-
edge assumptions to ensure that every agent observes the actions and rewards of all

86 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

other agents. Both are strong assumptions. Furthermore, in order to synchronize
exploration in the coordinated states, all agents should either select a joint action
communicated by the centralized controller, or based on a random number generator
with a specific seed that are common knowledge to all agents.

In this approach, either all or none of the agents have to coordinate their actions
in a specific state. This becomes problematic for large groups of agents since the size
of the Q-function for the coordinated states grows exponentially with the number of
agents. In general, however, only subsets of agents depend on each other in a specific
context. Next, we will therefore discuss context-specific SparseQ, a generalization of
sparse tabular multiagent Q-learning, which represents the coordination requirements
using a context-specific CG. First, this enables us to specify much more fine-grained
coordination dependencies between the agents because the dependencies are specified
over subsets of the agents and, in a factorized state representation, can be defined
in terms of subsets of the state variables. Secondly, the method becomes completely
distributed since each agent only depends on itself and its neighbors in the graph.

5.3.2 Context-specific sparse cooperative Q-learning

Sparse tabular multiagent Q-learning defines a state either as a coordinated state
in which all agents coordinate their actions, or as an uncoordinated state in which
all agents act independently. However, in many situations only some of the agents
have to coordinate their actions. In this section we describe context-specific sparse
cooperative Q-learning, a reinforcement-learning technique which enables subsets of
agents to learn how to coordinate based on a predefined coordination structure that
can differ between states [Kok and Vlassis, 2004a]. The described methods extend
the SparseQ methods described in Chapter 4 to context-specific CGs. Again, we
investigate both an agent-based and an edge-based decomposition of the used CG.

Agent-based decomposition

In the agent-based decomposition, each agent i is associated with a local value function
Qi(si,ai), in which si and ai respectively represent all the state and action variables
on which agent i depends. We assume that these dependencies, but not their actual
values, are specified beforehand. Instead of representing this function explicitly for
every possible action combination of the involved agents as in Chapter 4, we represent
this function with the values rules from a context-specific CG, that is,

Qi(si,ai) =
∑

j∈ni(si,ai)

ρi
j(si,ai), (5.6)

where ni(si,ai) are the indices of the value rules of agent i consistent with the state-
action pair (si,ai). Note that for a specific state si, a dependency between agent i
and an agent involved in ai might not be available because the value rules in which
these two agents are involved are not applicable for si. For this state the edge is then
removed from the graph.

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 87

1

2 3

〈 ρ1

1 ; a1 ∧ a2 ∧ s : v11 〉

〈 ρ1

2 ; a1 ∧ a3 ∧ s : v12 〉

〈 ρ1

3 ; a1 ∧ s : v13 〉

〈 ρ2

1 ; a1 ∧ a2 ∧ s : v21 〉

〈 ρ2

2 ; a2 ∧ a3 ∧ s : v22 〉

〈 ρ2

3 ; a2 ∧ a3 ∧ s : v23 〉

〈 ρ3

1 ; a1 ∧ a3 ∧ s : v31 〉

〈 ρ3

2 ; a3 ∧ s : v32 〉

〈 ρ3

3 ; a2 ∧ a3 ∧ s : v33 〉

〈 ρ3

4 ; a2 ∧ a3 ∧ s : v34 〉

(a) Context-specific CG.

1

2 3

〈 ρ1

1 ; a1 ∧ a2 : v11 〉

〈 ρ2

1 ; a1 ∧ a2 : v21 〉

〈 ρ3

2 ; a3 : v32 〉

(b) CG in state s.

1

2 3

〈 ρ1

3 ; a1 : v13 〉

〈 ρ2

2 ; a2 ∧ a3 : v22 〉 〈 ρ3

3 ; a2 ∧ a3 : v33 〉

(c) CG in state s.

Figure 5.3: Example agent-based context-specific CG with its value rules: (a) context-
specific CG with all dependencies, (b) CG conditioned on state s and action
a = {a1, a2, a3}, (c) CG conditioned on state s and action a∗ = {a1, a2, a3}.

Fig. 5.3(a) depicts an example context-specific CG with three agents, and a set
of value rules for each of the different agents. Each value rule consists of a single,
binary, state variable s and a specific assignment to a subset of the, binary, action
variables. Each agent individually models its dependencies with its neighboring agent,
and therefore the system contains multiple identical value rules. For example, the
dependency between agent 1 and agent 2 is modeled by the rules ρ1

2 and ρ3
1 that both

contain the same variable assignment. Note that, after learning, the values of the two
rules are not identical because they are differently updated. This equals the approach
taken in the agent-based SparseQ method in which each agent stores a Q-value based
on its actions and the actions of its neighbors in the graph. Later, in the edge-based
decomposition, we also investigate the consequences of storing only a single rule for
each dependency. Although then fewer rules are need, it complicates the update steps
since the value of each value rule has to be distributed over all involved agents.

In order to update the value rules in the agent-based decomposition after receiving
a (s,a, r, s′) sample, we take a similar approach as in the agent-based SparseQ method
in which each local Q-function is updated according to (4.4), that is,

Qi(si,ai) := Qi(si,ai) + α[Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)]. (5.7)

Each agent i thus updates its local action value based on its own action values and the
individually received reward Ri. The maximizing joint action a∗ = arg maxa

′ Q(s′,a′),
which is used to determine the local contribution Qi(s

′
i,a

∗
i) of agent i to the total

payoff, is computed using the VE algorithm. Since each local Q-function is represented
using value rules, we derive the update rule for a single value rule by first substituting

88 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

(5.6) in (5.7). This results in

∑

j∈ni(si,ai)

ρi
j(si,ai) :=

∑

j∈ni(si,ai)

ρi
j(si,ai) + α

∑

j∈ni(si,ai)

Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)

|ni(si,ai)|
. (5.8)

The rightmost summation decomposes the temporal-difference error into |ni(si,ai)|
equal parts, and thus does not use j explicitly. Because all summations are identical,
we can remove the sums, and write a local update of an applicable value rule ρi

j as

ρi
j(si,ai) := ρi

j(si,ai) + α
Ri(s,a) + γQi(s

′
i,a

∗
i) − Qi(si,ai)

|ni(si,ai)|
, (5.9)

which corresponds to a proportional division of the temporal-difference error of agent i
over the different value rules consistent with the state-action combination (si,ai).

We now show an update of the example depicted in Fig. 5.3. Assume that the joint
action a = {a1, a2, a3} is performed in state s and a∗ = {a1, a2, a3} is the optimal
joint action found with the VE algorithm in the next state s. After conditioning on
the context, that is, on both the state and action variables, the rules ρ1

1, ρ2
1, and ρ3

2

apply in state s, whereas the rules ρ1
3, ρ2

2, and ρ3
3 apply in state s. This is graphically

depicted in respectively Fig. 5.3(b) and Fig. 5.3(c). Next, we use (5.9) to update the
value rules in state s as follows:

ρ1
1(s1,a1) = v11 + α[R1(s,a) + γv13 − v11]

ρ2
1(s2,a2) = v21 + α[R2(s,a) + γv22 − v21]

ρ3
2(s3,a3) = v32 + α[R3(s,a) + γv33 − v32]

Note that each agent updates its value rules based on its own stored rules, and only
coordinates with its neighbors in order to compute the optimal joint action a∗. All
other computations are local.

Edge-based decomposition

In the edge-based decomposition the value rules are associated with the edges of a
context-specific CG. Because a value-rule representation can be related to more than
two agents, we treat the general case and place no restrictions on the number of
involved agents in a rule. Furthermore, to be consistent with our previous notation,
we assume each value rule pj

k is stored by agent j, and has index k in its set of rules.
Similar to (4.5), it is convenient to compute a local Q-function for each agent.

This function is defined as the sum of the values of the functions in which the agent
is involved. Again, we assume that the value of a value rule ρj

k is evenly distributed

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 89

1

2 3

〈 ρ1

1 ; a1 ∧ a2 ∧ s : v11 〉

〈 ρ1

2 ; a1 ∧ a3 ∧ s : v12 〉

〈 ρ1

3 ; a1 ∧ s : v13 〉

〈 ρ2

1 ; a2 ∧ a3 ∧ s : v21 〉

〈 ρ2

2 ; a2 ∧ a3 ∧ s : v22 〉
〈 ρ3

1 ; a3 ∧ s : v31 〉

(a) Context-specific CG.

1

2 3

〈 ρ1

1 ; a1 ∧ a2 : v11 〉

〈 ρ3

1 ; a3 : v31 〉

(b) CG in state s.

1

2 3

〈 ρ1

3 ; a1 : v13 〉

〈 ρ2

1 ; a2 ∧ a3 : v21 〉

(c) CG in state s.

Figure 5.4: Example edge-based context-specific CG with its value rules: (a) context-
specific CG with all dependencies, (b) CG conditioned on state s and action
a = {a1, a2, a3}, (c) CG conditioned on state s and action a∗ = {a1, a2, a3}.

over the involved agents Agents[ρj
k]. A local Q-function of an agent i is then defined

as

Qi(si,ai) =
∑

(j,k)∈n(si,ai,i)

ρj
k(si,ai)

|Agents[ρj
k]|

, (5.10)

in which (j, k) ∈ n(si,ai, i) returns the indices of the value rules that involve agent i
and are consistent with the current state-action combination (si,ai). Each index (j, k)
consists of both the agent j which stores the applicable rule, and the corresponding
index k of this rule in the agent’s set. Note that si and ai consist of respectively all
state and action variables that occur in the value rules in which agent i is involved,
and can thus also contain variables from the value rules of the neighbors of agent i. In
practice, however, an agent does not have to observe the state and action variables of
its neighbors since each agent individually conditions on the context, and then only
communicates the relevant value rules for the current situation when an agent needs
to compute its local Q-function. This is possible because we assume no uncertainty
in the observations. Fig. 5.4(a) shows the same problem as in Fig. 5.3 when each
dependency is modeled using a single value rule. Note that the number of required
value rules is greatly reduced compared to Fig. 5.3.

In Section 4.3.2, we discussed both an agent-based and an edge-based update
method for the edge-based decomposition for a standard CG. The edge-based update
method, in which the function related to an edge is updated based on the maximizing
contribution of the same edge in the next state, is not applicable to a context-specific
CG because its topology changes between states. For example, it is not possible to
propagate back the value from a dependency, represented as a value rule, that was not
applicable in the previous state. In order to derive the update rule for the agent-based

90 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

update method, we therefore first decompose (5.7) using (5.10) into

∑

(j,k)∈n(si,ai,i)

ρj
k(si,ai)

|Agents[ρj
k]|

=

∑

(j,k)∈n(si,ai,i)

ρj
k(si,ai)

|Agents[ρj
k]|

+ α[Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)]. (5.11)

Then, similar to (4.10), we first rewrite the temporal-difference error to

Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai) =

∑

(j,k)∈n(si,ai,i)

Ri(s,a) + γQi(s
′
i,a

∗
i) − Qi(si,ai)

|n(si,ai, i)|
. (5.12)

Note that, again, the rightmost summation only ensures that all summations are
identical and does not use the indices (j, k) explicitly. Then, we substitute (5.12) into
(5.11), and remove the sums. This results in

ρj
k(si,ai)

|Agents[ρj
k]|

=
ρj

k(si,ai)

|Agents[ρj
k]|

+ α
Ri(s,a) + γQi(s

′
i,a

∗
i) − Qi(si,ai)

|n(si,ai, i)|
. (5.13)

Each agent can derive a similar update for all the value rules in which it is involved.
Because multiple agents update the same value rule, we can combine the different
updates and write the update of a single rule as

ρj
k(si,ai) = ρj

k(si,ai) + α
∑

l∈Agents[ρj

k
]

Rl(s,a) + γQl(s
′
l,a

∗
l) − Ql(sl,al)

|n(sl,al, l)|
. (5.14)

Each value rule is thus updated based on its old value and the temporal-difference
error of all involved agents. We assume each agent contributes equally to all value
rules in which it is involved, and therefore the temporal-difference error is divided by
the number of rules in which its action is included.

We now show an update of the example depicted in Fig. 5.4. Again, we assume
that the joint action a = {a1, a2, a3} is performed in state s and a∗ = {a1, a2, a3}
is the optimal joint action found with the VE algorithm in the next state s. After
conditioning on the context, that is, both on the state and the action variables, the
rules ρ1

1 and ρ3
1 apply in state s, whereas the rules ρ1

3 and ρ2
1 apply in state s. This is

graphically depicted in respectively Fig. 5.4(b) and Fig. 5.4(c). Next, we apply (5.14)
and update the value rules in state s as follows:

ρ1
1(s1,a1) = v11 + α[R1(s,a) + R2(s,a) + γ(v13 +

v21

2
) − v11]

ρ3
1(s3,a3) = v31 + α[R3(s,a) + γ

v21

2
− v31]

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 91

Q1(s, a1, a2)

Q2(s, a1, a2)

Q3(s, a3)

Q1(s, a1)

Q2(s, a2, a3)

Q3(s, a2, a3)

R1(s,a)

R2(s,a)

R3(s,a)

s s

A1

A2

A3

Figure 5.5: Example representation of the local Q-functions of the three agents for the
transition from state s to state s in the example problem from Fig. 5.4.

Note that in order to update ρ1
1 we have used the discounted Q-values Q1(s,a

∗) =
v13/1 and Q2(s,a

∗) = v21/2. Furthermore, the component Q2 in state s is based
on a coordinated action of agent 2 with agent 3 represented by rule ρ2

1, whereas in
state s agent 2 has to coordinate with agent 1 (rule ρ1

1). Fig. 5.5 graphically depicts
the structure of the Q-functions for state s and s.

5.3.3 Experiments

Next, we apply the described methods to the pursuit, or predator-prey, domain in
which it is the goal of the predators to capture a prey in a discrete grid-like world.

Pursuit problem

The pursuit problem is a popular multiagent domain in which predators have to
capture one, or multiple, prey in a discrete grid environment [Benda et al., 1986;
Kok and Vlassis, 2003]. Several instances of the pursuit problem exist which differ
based on the applied capture method and the assumptions about the environment.
A prey can, for example, be captured when one or more predators move to the same
cell [Tan, 1993], or when it is surrounded by four predators [Stone and Veloso, 2000].
Assumptions regarding the environment specify, for example, which part of the envi-
ronment the predators are able to observe, or whether the predators can communicate.

We perform experiments on an instance of the pursuit problem in which two
predators have to explicitly coordinate their actions in order to capture a single prey
in a 10 × 10 toroidal grid. A sample configuration is shown in Fig. 5.6(a). Time
is divided into episodes, which are again divided into discrete time steps. At the
beginning of an episode, all predators and prey are initialized at random positions.
In each time step, first all predators simultaneously execute one of the five possible
movement commands: move north, south, east, west, or stand still. Note that because

92 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

the grid is toroidal, moving west from a cell in the leftmost column brings the agent
to the rightmost column, and moving north from the upper row moves the agent to
the bottom row. When two predators end up in the same cell, they are penalized and
moved to a random, empty, position on the grid. After the predators have executed
their actions, the prey moves according to a stationary randomized policy: it remains
on its current position with a probability of 0.2, and otherwise moves to one of its
free adjacent cells with uniform probability. Although the actions of the predators
always have the same deterministic outcome, the random behavior of the prey results
in a stochastic environment. A prey is captured, and the episode ends, when both
predators are located in cells adjacent to the prey and one of the two predators moves
to the location of the prey, while the other predator remains, for support, on its
current position. Fig. 5.6(b) shows a possible capture position. The prey is captured
when either the predator north of the prey, or the prey east of the prey will move to
the prey position and the other predator will remain on its current position. When a
predator moves to the prey without correct support, that is, the other predator is not
located in an adjacent cell or does not remain on its current position, it is penalized
and moved to a random, empty, position on the field. Because both collisions and
movement to the prey position without support result in a penalty, the agents are
forced to actively coordinate their actions in many situations. This differs from other
approaches which do not depend on the specific action combination performed by the
agents, for example, in the experiments performed by Tan [1993] the predators are
allowed to share the same cell and the prey is captured when either one, or multiple,
predators are located in the same cell as the prey.

The reward model for our problem is as follows: a capture results in a total reward
of 75; each predator i thus receives a reward Ri = 37.5 when it helps to capture the
prey. Furthermore, each predator receives a reward of −25.0 when it moves to the
prey without support, a reward of −10.0 when it collides with another predator, and
a reward of −0.5 in all other situations to stimulate a quick capture of the prey.

The state space can be represented by the relative position of the two predators
to the prey. Because the world is symmetrical, we can assume the prey is always
positioned at the origin and ignore its position. The complete state-action space then
consists of all combinations of the two predator positions relative to the prey and
all action combinations of the two predators. In total this yields 242, 550, that is,
99 ·98 ·52, state-action pairs. However, the predators only have to actively coordinate
their actions when they are close to each other. For our context-specific learning
methods, we therefore make a distinction between coordinated and uncoordinated
states. We define a state as coordinated when either

• the Manhattan distance between the predators is smaller or equal than two cells

• both predators are within a distance of two cells to the prey.

We apply our sparse tabular approach and our context-specific SparseQ method,
with both an agent-based and edge-based decomposition, to learn the behavior of the
predators in the described problem. Furthermore, we also apply the IL, MDP and

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 93

predator

prey

(a) Complete 10 × 10 toroidal grid.

(b) Possible capture position.

Figure 5.6: Example pursuit problem. (a) 10 × 10 toroidal grid with two predators and
one prey. (b) Possible capture position. The prey is captured when one of the
two agents moves to the prey position while the other remains on its position.

DVF approach as described in Section 4.4.1. The IL approach stores a Q-function
based on the full state information and one of the five possible actions. This corre-
sponds to 48, 510, that is, 99 · 98 · 5, different state-action pairs for each agent. The
DVF approach stores similarly sized Q-functions, but each update also incorporates
the Q-functions of the other agent. In the MDP learners approach we model the
system as a complete MDP with the joint action represented as a single action. In
the sparse tabular approach, we store joint actions for the coordinated states, and
independent actions for the uncoordinated states. With the given definition of a co-
ordinated state, we have 1, 248 coordinated states, and 8, 454 uncoordinated states.
For the two context-specific SparseQ methods, we also decompose the state space by
ignoring the local state of the other predator for the uncoordinated states. This results
in a set of 495, that is 99 · 5, individual value rules per agent for the uncoordinated
states. An example rule look as

〈ρ1
1 ; predator1(−3, 3) ∧ coord = false ∧ a1 = move north : 37.5〉,

which represents the situation in which predator 1 is at relative position (−3, 3) to the
prey and performs a movement command to the cell to its north. The state variable
coord = false indicates that the predator does not has to coordinate its action in this
state and ensures that this rule is not applicable in the situation when the state is
coordinated. The state variable ‘coord’ is automatically derived from the two predator
positions. Because we do not consider individual rules for which coord = true, this
does not influence the size of the representation of the state-action space.

For the 1, 248 coordinated states we add value rules that involve the state and

94 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

10
4

10
5

10
6

−15

−10

−5

0

5

10

15

20

25

IL
DVF
MDP
Sparse tabular
Context−Specific SparseQ agent (VE)
Context−Specific SparseQ edge (VE)
Manual

episodes

a
v
e
ra

g
e

d
is

c
o
u
n
te

d
re

w
a
rd

(a) Average reward.

10
4

10
5

10
6

10

15

20

25

30

35

40

45

50

55

60

IL
DVF
MDP
Sparse tabular
Context−Specific SparseQ agent (VE)
Context−Specific SparseQ edge (VE)
Manual

episodes

a
v
e
ra

g
e

c
a
p
tu

re
ti

m
e

(b) Average capture time.

Figure 5.7: Running average of the reward and capture times during the first 1, 000, 000
episodes. The episodes are shown using a logarithmic scale. Results are aver-
aged over 10 runs.

action variables of both predators. For example, the specific coordination rule which
corresponds to a capture of the prey in the situation of Fig. 5.6(b) is defined as

〈ρ1
2 ; predator1(0, 1) ∧ predator2(1, 0) ∧

a1 = move none ∧ a2 = move west : 75〉.

We ignore the coord variable since this rule is always applicable in the specific config-
uration of the two predators. In the agent-based decomposition, both agents store a
copy of each coordinated value rule, resulting in the generation of 31, 200 coordinated
value rules per agent. Combined with the rules for the uncoordinated states both
agents store 63, 390 value rules in total. In the edge-based decomposition only one
of the two agents stores coordinated value rules, and in total 32, 190 value rules are
defined. The last column of Table 5.1 gives an overview of the number of action values
for each of of the applied methods.

In all approaches, we use an ǫ-greedy exploration step ǫ = 0.2, a learning rate α =
0.3, and a discount factor γ = 0.9. Furthermore, all Q-values are initialized with
the maximal reward, that is, a value of 75 for the coordinated states, and 37.5 for
the uncoordinated states. This ensures that the predators explore all possible action
combinations sufficiently because non-tried actions will have a high action value.

Fig. 5.7 shows the running average of both the reward and the capture time for
the learned policy during the first 1, 000, 000 episodes. The results are averaged over
10 runs. During each run the current learned policy is tested after each interval
of 100 learning episodes, without exploration actions, on a randomly generated test
set of 100 starting configurations. This test set is fixed beforehand and the same
for all methods. Each of the 10, 000 tests results in an average capture time and an
average obtained cumulative discounted reward, which are both shown in Fig. 5.7. To

5.3. CONTEXT-SPECIFIC MULTIAGENT Q-LEARNING 95

method reward avg. time #Q-values

IL 9.579 24.273 97,020

DVF 7.977 31.448 97,020

MDP 25.996 10.448 242,550

Sparse tabular 26.001 10.436 115,740

Context-specific sparseQ agent 20.353 11.798 63,390

Context-specific sparseQ edge 20.047 11.921 32,190

Manual 23.959 10.893 -

Table 5.1: Reward and capture time, averaged over the last 10 test runs, after learning for
1, 000, 000 episodes. The number of state-action pairs is also given.

make the final results clearer, the averages are visualized by computing the running
average over the last 20 tests and showing the x-axis in logarithmic scale.

The IL approach and the DVF approach perform worst. Both methods do not
converge to a single policy, but keep oscillating. Because they store Q-functions
based on the individual actions of the agents, they update the same Q-value both
after successful and unsuccessful coordination with the other agent. For example,
when both predators are located next to the prey and one predator moves to the prey
position, this predator is not able to distinguish between the situation in which the
other predator remains on its current position or performs one of its other actions.
As a result the same Q-value is updated in both cases, although a positive reward is
received in the first situation and a large negative reward in the second situation.

These coordination dependencies are explicitly taken into account for the other
approaches. For the MDP learners, they are modeled in every state which results
in slow convergence because all state-action pairs have to be explored. Eventually,
however, it results in an optimal policy. The final result is slightly better than our
manual implementation. For this implementation, we first map each predator to a
different adjacent cell of the prey such that the sum of the Manhattan distances of
the current positions of the predators to their assigned cell is minimized. Then, each
agent performs an action that minimizes the distance to this position while using
social conventions to avoid collisions: when a selected action combination will result
in a collision, one of the two agents remains on its current position. When both
predators stand next to the prey, social conventions based on the relative positioning
are used to decide which of the two predators moves to the prey position.

The sparse tabular approach only considers joint actions for the coordinated states
and results in a similar policy, in much fewer learning episodes, as the MDP learn-
ers approach. However, this method learns based on the full state information and
therefore does not scale to problems with a very large state space. On the other
hand, the two context-specific SparseQ methods learn in a sparse representation of
the state space because they do not incorporate the state information of the other

96 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

predator in the uncoordinated states. This results in a fast increase of the learning
curve compared to the other methods in the first episodes. The final difference with
respect to the sparse tabular approach, which only decomposes the action space, is
minimal. This indicates that especially the large action size, which requires a large
number of exploration actions, results in the faster convergence of the sparse tabu-
lar Q-learning approach with respect to the MDP learners approach. As we see in
Fig. 5.7, the context-specific SparseQ approaches converge to a lower average reward
and a higher capture time than that of the sparse tabular approach. An explanation
for this difference is that we assume the agents do not depend on each other posi-
tions when they are located far away from each other. However, already coordinating
in these states might have a positive influence on the final result. For example, we
observe in the final policy of the context-specific SparseQ approach that, when the
predators are initialized at the same side of the prey, they independently move to the
same adjacent cell of the prey when they are still in an uncoordinated state. When
entering a coordinated state, they then have to perform one or two additional steps
to position themselves correctly. These additional steps explain the lower reward ob-
tained by the context-specific SparseQ method: they result in an additional negative
reward because of the extra time steps, but also because of the larger discount value
that is applied to the final reward when the prey is captured. Such constraints can be
added as extra value rules, but then a lot of additional value rules have to be defined,
resulting in slower convergence to a good policy. Clearly, a trade-off exists between
the expressiveness of the model and the number of episodes to obtain a good policy.

Table 5.1 shows the average discounted cumulative reward and the average capture
times over the last 10 test episodes after 1, 000, 000 learning episodes. Both the
MDP learners and the sparse tabular approach show similar results for the obtained
reward and capture time. The sparse tabular method, however, only requires half
the number of action values for its representation. The two context-specific SparseQ
methods result in a policy which needs, for reasons explained earlier, approximately
1.3 additional steps to capture the prey, but learn based on a smaller number of
action values: the edge-based decomposition stores approximately one seventh of the
number of Q-values requires by the MDP learners approach.

The computation time for all table-based learning approaches, not shown, do not
differ much: 100 updates take approximately 50 milliseconds. The two rule-based
approaches involve the management of rules and are for this problem about 10 times
slower. Because our focus is not on optimizing the implementation of the rule-based
system (for example, how the rules are indexed), we will not discuss the computation
times in much detail. We do note that, in general, the computational complexity
depends on the particular problem under study. First, it depends on the number of
rules that are used to represent each particular situation. Second, it depends on the
complexity of the rule-based VE algorithm which on its turn depends on the number
of rules that can be dominated during the local maximizations. Finally, we do note
that the additional complexity of storing and managing set of rules only outweighs
a full table-based representation with respect to the computation time in problems
with a large state-action space involving a large amount of context-specific structure.

5.4. LEARNING INTERDEPENDENCIES 97

5.4 Learning interdependencies

In the previous section, we showed how agents are able coordinate their actions using
predefined coordination dependencies that differ based on the context. Next, we pro-
pose a method to learn these dependencies automatically. The main idea is to start
with independent learners and maintain statistics on expected returns based on the
actions of the other agents. If the statistics indicate that it is beneficial to coordi-
nate, a dependency is added dynamically between the involved agents. This method
is inspired by ‘utile distinction’ methods from single-agent reinforcement learning
that augment the state space when this distinction helps the agent predict reward
[Chapman and Kaelbling, 1991; McCallum, 1997]. Hence, our method is called the
utile coordination algorithm [Kok et al., 2005a]. Next, we explain this method in more
detail, and apply it to a small coordination problem and the predator-prey problem.

5.4.1 Utile coordination

Our approach to automatically learn the dependencies between the agents is derived
from the adaptive resolution reinforcement-learning methods for single-agent prob-
lems [Chapman and Kaelbling, 1991; McCallum, 1997]. These methods are used to
construct a partitioning of the state space for partially observable Markov decision
processes in which, as described in Section 2.2, the previous received observations
might give additional information about the current state. An agent starts with an
initial state representation based on its observations and augments its representation
after finding so-called ‘utile distinctions’. These are detected through statistics of the
expected returns maintained for hypothesized distinctions [McCallum, 1997]. More
specifically, this method stores the future discounted reward received after leaving a
state and associates it with an incoming transition, that is, the previous state. When
a state is Markovian with respect to return, the return values on all incoming transi-
tions should be similar. On the other hand, if the statistics indicate that the returns
are significantly different, the state should be split. This is done by distinguishing
the state based on its incoming transitions, and making a separate state depending
on each possible previous state. This allows a single agent to build an appropriate
representation of the state space and predict the future reward better.

We take a similar approach in our utile coordination algorithm. The main dif-
ference is that, instead of keeping statistics on the expected return based on in-
coming transitions, we keep statistics based on the performed actions of the other
agents. The algorithm starts with independent, uncoordinated, learners, and over
time learns, based on acquired statistics, in which states specific action combinations
of the independent learners result in a substantially higher reward. These states are
then changed in coordinated states. In our context-specific CG framework this cor-
responds to adding new coordinated value rules based on all action combinations of
the involved agents. Note that it is also possible to start with an initial CG that al-
ready incorporates coordination dependencies that are based on prior domain-specific
knowledge and learn additional dependencies during learning.

98 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

Statistics of the expected return are maintained to determine the possible benefit
of coordination. More formally, in each state s where coordination between two or
more agents in a set I is considered, a sample of the combined return Q̂I(s,aI) is
stored for the performed joint action a. The combined return is an approximation of
the expected return that can be obtained by the involved agents i ∈ I and equals
the sum of their received individual reward Ri(s,a) and their individual contribution
Qi(s

′,a∗) to the maximal global Q-value of the next state s′:

Q̂I(s,aI) =
∑

i∈I

[Ri(s,a) + γQi(s
′,a∗)], (5.15)

in which the optimal joint action a∗ in state s′ is computed using the VE algorithm.
These samples can be regarded as an estimate of the total local payoff matrix for
the agents in I in which each entry of the matrix specifies the expected return for a
specific action combination.

These statistics are not used to change the agent’s action values, but are stored
to perform a statistical test at the end of an m-length trial to determine whether
the agents in I should coordinate their actions. This test consists of the following
steps for each state s. First, it computes the expected combined return for each of
the performed actions aI as the mean Q̄I(s,aI) of the last M samples. Then, when
enough samples are obtained, it measures whether the largest expected combined
return maxaI

Q̄I(s,aI) with variance σ2
max, differs significantly from the expected

combined return Q̄I(s,a
∗
I) with variance σ2

∗. The latter return corresponds to the
return obtained when performing the greedy joint action a∗

I in state s and thus corre-
sponds to the independently learned policy. When the two returns differ significantly
for a specific state s, this state is changed into a coordinated state.

We use the t-test [Stevens, 1990] as the statistical test to compare the two values:

t =
maxaI

Q̄I(s,aI) − Q̄I(s,a
∗
I)√

[(2/M)((M − 1)σ2
max + (M − 1)σ2

∗)/(2M − 2)]
(5.16)

with (2M − 2) degrees of freedom. From this value the level of significance p is
computed indicating the probability of rejecting the null hypothesis, that is, the two
groups are equal, when it is true. There also exist other statistical tests that can be
applied to determine whether the two groups are significantly different. In particular,
nonparametric tests may be used since assumptions of normality and homogeneity of
variance may be violated. However, the t-test is fairly robust to such violations when,
as in our case, group sizes are equal [Stevens, 1990].

Apart from the test whether the difference between the two groups are significant
different, we also use an additional statistical effect size measure d to determines
whether the observed difference is sufficiently large. We assume d equals the standard
effect size measure [Stevens, 1990], and corresponds to the difference in means with
respect to the maximum and minimum reward, that is,

d =
maxaI

Q̄I(s,aI) − Q̄I(s,a
∗
I)

rmax − rmin

. (5.17)

5.4. LEARNING INTERDEPENDENCIES 99

If there is a statistically significant difference (p < P) with sufficient effect size
(d > D), there is a significant benefit of coordinating the agents’ actions in this state:
apparently the current CG leads to a significantly lower return than the possible
return when the actions are coordinated. This, for example, occurs in the situation
in which one specific joint action produces a high return but all other joint actions
result in a substantially lower return. Since the agents select their actions individually
they only occasionally obtain the high return. Then, the stored statistics, based on
joint actions, contain a combination of actions that results in a significantly higher
return than the current policy. This is detected by the described test and the state is
changed into a coordinated state. In our context-specific CG framework value rules
based on individual actions for this particular state are then replaced by value rules
based on joint actions. The value of each new rule ρ(s,aI) is initialized with the
learned value Q̄I(s,aI).

It is also possible to apply the above procedure to test coordination between more
than two agents or test coordination between different groups of agents. In the first
case, the statistics are stored for joint actions aI involving more than two agents. In
the second case, the actions of each group of agents are represented as a single action.
In both cases, the statistical test always looks at two estimates of expected combined
return: maxaI

Q̄I(s,aI) and Q̄I(s,a
∗
I).

In very large state-action spaces, memory and computation limitations make it
infeasible to maintain these statistics for all states. It then makes sense to use a
heuristic ‘initial filter’ which detects potential states where coordination might be
beneficial. The full statistics on combined returns are then only maintained for the
potential interesting states detected by the initial filter. In this way, large savings in
computation and memory can be obtained while still being able to learn the required
coordination. Our emphasis in this thesis is on showing the validity of the utile
coordination algorithm. Therefore, we do not use a heuristic initial filter in our
experiments, and store statistics for every state.

5.4.2 Experiments

In this section, we apply the utile coordination algorithm to two problems: a simple
coordination problem and the larger predator-prey domain.

Simple problem

We first illustrate our utile coordination approach on the simple problem depicted in
Fig. 5.8. This collaborative MMDP consists of two agents and seven states. In each
state both agents select an individual action from their action set A1 = A2 = {a, b, c}.
The resulting joint action only influences the state transition in state s0. When one
of the agents selects action b, the system transitions to s1. In this state every selected
joint action, indicated by (∗, ∗), results in a transition to state s4 and both agents
receive a reward of 0.25. Selecting the joint action (c, c) in state s0 eventually results
in the highest reward of 1.5, but failure of coordination, that is selecting one of the

100 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

s0

s1

s2

s3

s4

s5

s6

+0.25

+1.5

−7.5(∗, ∗)

(∗, ∗)

(∗, ∗)

(∗, ∗)

(∗, ∗)

(b, ∗), (∗, b)

(c, c)

(a, a), (a, c),

(c, a)

Figure 5.8: Simple coordination problem with seven states. The joint action influences
the state transition in state s0. The numbers on the right represent the given
reward to the agents in the corresponding state.

three remaining joint actions, results in a large negative reward of −7.5. The problem
is chosen such that the rewards are delayed, and the agents need to actively coordinate
their actions in state s0 in order to gather the reward of 1.5. When only one of the
agents selects the individual action c that is part of the optimal joint action in s0, both
agents receive a large penalty. This causes problems for independent learners because
they do not take into account the action selected by the other agent. Using our
utile coordination algorithm, the agents should detect that they need to coordinate
in state s0 and generate coordinated value rules for this state. When these new rules
are added, they are able to learn the outcome for each joint action and select the
coordinated action that results in the high reward.

We apply different reinforcement-learning techniques on the problem in Fig. 5.8.
The IL and DVF approach learn based on individual actions, and both need 42 action
values to represent the state-action space. The MDP learners model the joint action
for every state resulting in 63 action values. Just as with the IL approach, our
utile coordination approach starts with action values represented using an edge-based
context-specific CG that is based on value rules with individual actions. After each
m = 1, 000 steps, this method checks for every state whether it is a coordinated state
using (5.16) and (5.17). In case the test indicates the actions of the agent depend
on each other, the value rules based on individual actions are replaced by value rules
based on joint actions.

All approaches learn for 7, 000 cycles and average their results over 30 runs. Since
it always takes three steps to return to the starting state s0 we perform three test-
ing cycles, in which the agents select their greedy action, after every three learning
cycles. All methods use a learning rate α = 0.25, a discount factor γ = 0.9, and
ǫ-greedy value ǫ = 0.3. For a fair comparison, all approaches explore jointly, that
is, with probability ǫ all agents select a random action. This is more conservative

5.4. LEARNING INTERDEPENDENCIES 101

0 1000 2000 3000 4000 5000 6000 7000

−0.2

0

0.2

0.4

0.6

0.8

1

IL
DVF
MDP
Utile coordination
Context−specific SparseQ edge (learned value rules)

a
v
e
ra

g
e

re
w

a
rd

cycles

Figure 5.9: Running average, of the last 1, 000 cycles, of the global reward for the different
approaches on the problem in Fig. 5.8. Results are averaged over 30 runs.

than the case in which independent learners independently choose a random action
with probability ǫ. For the parameters in our utile coordination approach, we use a
significance level P = 0.05, an effect size D = 0.01, and a sample size M = 10.

Fig. 5.9 shows the running average, over the last 1, 000 test cycles, of the global
reward for the different applied techniques. The running average is taken over so many
time steps to make the different curves smoother. The IL and the DVF approach
both converge to the safe policy of moving to state s1 and receive the non-optimal
global reward of 0.5. Note that the reward is only received every third cycle, and
therefore the average reward shown in Fig. 5.9 is one third of this value. They fail to
converge to the optimal policy of choosing action c because the corresponding Q-value
is significantly lowered in the case that the other agent performs a different action.
The MDP learners do not have this problem, because they model each joint action
separately, and converge to the optimal policy.

Our utile coordination approach starts with value rules based on individual actions
and therefore follows the learning curve of the IL approach in the beginning. However,
Fig. 5.9 shows that from the third trial onward, that is, from time step 3, 000, the
average reward of the utile coordination approach transitions from the IL curve to
that of the MDP learners. Although it occasionally takes four or five trials before the
coordination dependency is detected, the agents then have enough samples to discover
that s0 is a coordinated state and add value rules based on joint actions for state s0.
As a result, the agents are able to distinguish which joint action results in the high
reward and converge to the optimal policy.

Fig. 5.9 also shows that when we apply our context-specific SparseQ method using
the learned coordination dependencies the system converges slightly quicker to the
optimal policy than the MDP learners approach. The learned rules only model joint

102 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

10
4

10
5

10
6

−15

−10

−5

0

5

10

15

20

25

MDP
Sparse tabular
Utile coordination
Context−specific SparseQ edge (learned rules)a

v
e
ra

g
e

d
is

c
o
u
n
te

d
re

w
a
rd

episodes

(a) Average reward.

10
4

10
5

10
6

10

15

20

25

30

35

40

45

50

55

60

MDP
Sparse tabular
Utile coordination
Context−specific SparseQ edge (learned rules)

a
v
e
ra

g
e

c
a
p
tu

re
ti

m
e

episodes

(b) Average capture time.

Figure 5.10: Running average of the reward and capture times during the first 1, 000, 000
episodes. The episodes are shown using a logarithmic scale. Results are
averaged over 10 runs.

actions for state s0, and therefore this approach needs less exploration. Note that
this representation is identical to a sparse tabular representation when only state s0

is defined as a coordinated state.

Pursuit problem

We also apply our utile coordination algorithm to the same predator-prey problem as
discussed in Section 5.3.3. In a 10× 10 toroidal grid it is the goal of two predators to
capture a single prey. The prey is captured when the predators are both positioned in
an adjacent cell to the prey, and then one of the predators moves onto the prey position
while the other remains on its current position. In the utile coordination approach,
each agent starts with individual value rules that are based on the individual actions
of the agent and the full state information, that is, the relative position of both
predators to the prey. The statistical test to determine which states are coordinated
are performed after every m = 20, 000 episodes. Again, we use a significance level
P = 0.05, an effect size D = 0.01, and the same reinforcement-learning parameters
that are used in the experiments in Section 5.3.3, ǫ = 0.3, α = 0.25, and γ = 0.9.

We run the utile coordination method 10 times. After every 100 learning episodes,
the current policy is applied to the same 100 starting configurations used in the
experiments in Section 5.3.3. Fig. 5.10 shows the running average, over the last 10
episodes, of the reward and the capture time. It also shows the results of the sparse
tabular and MDP approach, which are also based on the full state information, from
the experiments in Section 5.3.3. The utile coordination approach initially learns
based on individual actions. However, after the end of the first trial, at episode
20, 000, the agents add coordinated value rules for the states in which the gathered
statistics indicate that coordination is beneficial and the performance slowly increases.

5.5. DISCUSSION 103

method reward avg. time #Q-values

MDP 25.997 10.566 242,550

Sparse tabular 26.001 10.362 115,740

Utile coordination 25.044 10.452 103,851

Context-spec. SparseQ edge (learned rules) 26.023 10.352 103,851

Table 5.2: Average reward and capture time, of the last 10 test runs, after learning for
1, 000, 000 episodes. The number of state-action pairs is also given.

This process continues as more fine-grained coordination dependencies are added. In
the end, the found policy is similar to the policy found by the sparse tabular and
MDP learners approach. On average 455.40 out of the 9, 702 states were found to
be statistically significant and added as coordinated states. This is a smaller number
than the 1, 248 manually specified states in Section 5.3.3 in which coordinated rules
were added for all states in which the predators where within two cells of each other
or both within two cells of the prey. This difference is caused by the fact that for
many states the agents are able to learn how to coordinate using value rules based on
individual actions, for example, how to avoid a collision.

We also apply the edge-based context-specific SparseQ method using the learned
coordination dependencies. As in Section 5.3.3, the values of the coordinated value
rules are initialized with the maximal reward of 75, while those based on individual
actions are initialized at 37.5. Because of the smaller number of used dependencies
this approach learns slightly quicker than the sparse tabular approach, and results in
a similar performance.

Table 5.2 shows the final capture times and the number of Q-values needed to
represent the state-action space for each method, indicating that all applied methods
result in a similar performance.

5.5 Discussion

In this chapter we described context-specific sparse cooperative Q-learning (context-
specific SparseQ), a reinforcement-learning approach for cooperative multiagent sys-
tems in which the global action value is decomposed using value rules that specify
the coordination requirements of the system for a specific context. These rules can be
regarded as a compact representation of the complete state-action space since they are
defined over a subset of all state and action variables. We investigated both an agent-
based and edge-based decomposition of the global action value. In both cases, the
value of each rule contributes additively to the global action value, and is updated
based on a Q-learning update rule that adds the local contribution of all involved
agents in the rule. Effectively, each agent learns to coordinate only with its neighbors
in a dynamically changing coordination graph. Results in the predator-prey domain

104 CHAPTER 5. CONTEXT-SPECIFIC MULTIAGENT LEARNING

show that our method learns a policy close to the optimal policy and improves upon
the learning time of other multiagent Q-learning methods. In order to perform even
closer to the optimal policy more coordination dependencies have to be defined, but
this will decrease the learning time. A trade-off exists between the used representation
of the state-action space and the number of learning steps to obtain a good policy.

We also introduced the utile coordination algorithm, a method which starts with
independent, non-coordinating, agents and learns automatically where and how to
coordinate. The method is based on maintaining statistics on expected returns for
hypothesized coordinated states, and a statistical test that determines whether the
expected return increases when actions are explicitly coordinated. Using the value-
rule representation, a coordinated requirement can easily be constructed by adding
value rules which incorporate the actions of the other agent.

We only studied the problem of extending the action space. Another interesting
direction is to investigate the possibility of decreasing the action space by removing
dependencies which are unnecessary according to the gathered statistics. In this
case, we also have to store statistics for coordinated states based on hypothesized
uncoordinated states and test whether the expected return is not significantly lower
when the actions are not explicitly coordinated.

As described before, maintaining the complete statistics for all states is not com-
putationally feasible for large problems with many agents. Since these are the tasks
where the advantage of utile coordination over MDP learners, in terms of space and
learning time, is more pronounced, it is important to investigate additional meth-
ods, for example, heuristic initial filters, that determine which agents coordination
dependencies should be tested for a specific state.

Heuristic initial filters are not the only way to deal with large state-action spaces.
In this chapter, we investigated a method to learn the coordination dependencies be-
tween the agents when the full state information was given. An equally important,
orthogonal possibility is a variation of the utile coordination algorithm based on learn-
ing which state variables are important for coordination. This should also combine
well with coordination graphs, because they are explicitly designed for such state rep-
resentations. An individual agent is then able to start with rules which only represent
its own individual view of the environmental state, and then learn to augment their
state representation when necessary.

6

Dynamic Continuous Domains

In this chapter we present a method to coordinate multiple robots in dynamic and con-
tinuous domains. We apply context-specific coordination graphs to complex uncertain
environments by assigning roles to the agents based on the continuous state informa-
tion and then coordinating the different roles [Kok et al., 2003, 2005b]. This simplifies
the coordination structure and constrains the action space of the agents considerably.
Furthermore, we demonstrate that, with some additional common knowledge assump-
tions, an agent can predict the actions of the other agents, rendering communication
superfluous. This approach results in a method to specify a team strategy using nat-
ural coordination rules. We have successfully implemented the proposed method into
our UvA Trilearn simulated robot soccer team which won the RoboCup-2003 World
Championships in Padova, Italy.

6.1 Introduction

In the previous chapters we investigated techniques to coordinate the behavior of a
group of agents in multiagent sequential decision-making problems with a discrete
representation of the state-action space. In this chapter we extend these techniques
to coordinate agents embedded in a complex uncertain environment [Koller, 2004].

As before, we use a context-specific coordination graph (context-specific CG), see
Section 5.2, to model the dependencies between the agents using value rules. The
continuous nature of the state-action space, however, makes the direct application of
context-specific CGs difficult. Therefore, we appropriately ‘discretize’ the continuous
state by assigning roles to the agents and then, instead of coordinating the different
agents, coordinate the different roles. This approach offers several benefits: the set of
roles allows for the definition of natural coordination rules that exploit prior knowledge
about the domain, and constrain the feasible action space of the agents. This greatly
simplifies the modeling and the solution of the problem at hand. We also describe
how the agents, with additional common knowledge assumptions, are able to predict
the optimal action of their neighboring agents, making communication superfluous.

We apply our method to coordinate the agents in the RoboCup simulation soccer
domain [Noda et al., 1998]. The Robot Soccer World Cup (RoboCup) is an inter-
national research initiative that uses the game of soccer as a domain for artificial
intelligence and robotics research. The soccer server [Chen et al., 2003] is the basis

106 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

for the 2D simulation competition. It provides a fully distributed dynamic multi-robot
domain with both teammates and adversaries and models many real-world complex-
ities such as noise in object movement, noisy sensors and actuators, limited physical
ability, and restricted communication. One team is represented by eleven different
computer processes that independently interact with the simulator in order to fulfill
their common goal of scoring more goals than their opponent.

We perform experiments using our robot soccer simulation team UvA Trilearn
[De Boer and Kok, 2002] in which we how to coordinate the behavior of different
agents using context-specific CGs that are specified for the different roles.

The setup of this chapter is as follows. In Section 6.2 we describe the RoboCup
initiative and the soccer simulator. In Section 6.3 we review the main characteristics
of our robot soccer simulation team UvA Trilearn. In Section 6.4, we present our
framework to coordinate a group of agents in a continuous dynamic environment
using roles. In Section 6.5 we apply this approach to coordinate the agents in the
UvA Trilearn team, and perform several benchmarking experiments. Furthermore,
we give an overview of the results of UvA Trilearn in the different competitions in
which it participated in 2003. Finally, we end with some conclusions in Section 6.6.

6.2 RoboCup

In this section we shortly review the robot world cup initiative and give some details
about the 2D soccer simulation system that is used in the simulation competition.

6.2.1 The robot world cup initiative

The Robot World Cup (RoboCup) initiative is an attempt to foster artificial intelli-
gence (AI) and intelligent robotics research by providing a standard problem where
a wide range of technologies can be integrated and examined [Kitano et al., 1997].
RoboCup’s ultimate long-term goal is stated as follows [Kitano and Asada, 1998]:

“By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win a soccer game, complying with the official rules of the
FIFA, against the winner of the most recent world cup for human players.”

Although this sounds like an overly ambitious goal, history has shown that much
progress can be accomplished in only a few decades. For example, it took roughly 66
years after the first man-carrying flight by Orville Wright in 1903, which only covered
about 120 feet and lasted for 12 seconds [Jakab, 1990], to the moment that Neil Arm-
strong stepped out of the Apollo-11 Lunar Module onto the surface of the moon in 1969
[Collins and Aldrin, 1975]. Also, it took only 51 years from the release of the first op-
erational general-purpose electronic computer in 1946, the ENIAC built by J. Presper
Eckert and John Mauchly at the University of Pennsylvania [Patterson and Hennessy,
1994], to the computer chess program Deep Blue which defeated the human world
champion Gary Kasparov [Schaeffer and Plaat, 1997].

6.2. ROBOCUP 107

Aside from this long-term objective, RoboCup also looks to short-term objectives.
In the first place, RoboCup promotes robotics and AI research by providing a chal-
lenging problem as it offers an integrated research task which covers many areas of
AI and robotics, for example, design principles of autonomous agents, multiagent col-
laboration, strategy acquisition, real-time reasoning, reactive behavior, real-time sen-
sor fusion, learning, vision, motor control, intelligent robot control, and many more
[Kitano et al., 1997]. Secondly, RoboCup is used to stimulate the interest of stu-
dents and the general public for robotics and AI. This is apparent from the different
RoboCup-related study projects given in universities all over the world, and the media
and public attention for the world championship every year. The RoboCup-2005 world
championship in Osaka, for example, has been visited by more than 150, 000 visitors.
Another aspect of RoboCup is that it provides a standard problem for the evaluation
of various theories, algorithms and architectures. Using a standard problem for this
purpose has the advantage that different approaches can be easily compared and that
progress can be measured.

In order to achieve the RoboCup long-term objective, the RoboCup organization
has introduced several robot soccer leagues which each focus on different abstraction
levels of the overall problem. Currently, the main leagues are the following:

• Humanoid League. In this league a humanoid robot has to accomplish differ-
ent soccer related tasks, which range from taking penalty kicks to playing two
against two. The main research areas are related to the control of a two-legged
robot and include dynamic walking, running, kicking the ball, visual perception
of the field, and self-localization.

• Middle Size Robot League. In this league each team consists of a maximum
of four robots, which are about 75cm in height and 50cm in diameter. The
playing field is approximately 12 × 8 meters and the robots have no global
information about the world. Important research areas for this league include
localization, computer vision, sensor fusion, distributed perception, robot motor
control, and hardware issues.

• Small Size Robot League. In this league each team consists of five robots,
which are about 15cm in height and 18cm in diameter. The playing field has the
size of a table-tennis table. A separate computer, which receives a global view of
the field from an overhead camera, controls the different robots. Research areas
which are important for this league include those of the Middle Size League,
but because of the global control the focus is more on strategy development.

• Four Legged Robot League. In this league each team consists of four Sony
quadruped robots, better known as AIBOs. The robots have no global view
of the world but localize themselves using various colored landmarks which are
placed around the field. The main research areas for this league are similar to
those of the Middle Size League, with an extra focus on intelligent robot control
and quadruped locomotion.

108 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

• Simulation League. In this league each team consists of eleven synthetic
software agents which operate in a simulated environment. Research areas which
are being explored in this league include multiagent collaboration [Tambe, 1997],
multiagent learning [Stone, 1998; Riedmiller and Merke, 2002], and opponent
modeling [Riley and Veloso, 2000]. The soccer competition consists of both a
2D and 3D soccer competition. In the 3D competition, which was held for
the first time in 2003, the agents interact with the world based on real-world
dynamics implemented using the open dynamics engine (ODE) [Smith, 2006].
The agents are currently represented by spheres with a simple kicking device,
but the implementation of the simulator allows the agents to be configured
by an arbitrary combination of different objects. This allows teams from the
other leagues to experiment with the simulator using agents that have the same
physical constraints as their own robots.

In the 2D competition, which has been held from 1997, the physical model of the
agents is greatly simplified which makes it easier to focus on high-level aspects
as learning and strategic reasoning.

Currently, the simulation league is the largest league due to the fact that no
expensive hardware is needed to build a team. Furthermore, it is much easier,
and cheaper, to test a simulation team against different opponents.

We will mainly concentrate on the 2D simulator of the RoboCup Simulation
League in this chapter. Next, we will review the 2D soccer simulation system, called
the RoboCup soccer server, in more detail.

6.2.2 The RoboCup soccer server

The RoboCup soccer server [Chen et al., 2003] is a soccer simulation system which
enables teams of autonomous agents to play a match of soccer against each other. The
system was originally developed in 1993 by Dr. Itsuki Noda (ETL, Japan) [Noda et al.,
1998]. In recent years it has been used as a basis for several international competitions
and research challenges. The soccer server contains many real-world complexities such
as sensor and actuator noise and limited perception and stamina for each agent. One of
the advantages of the soccer server is the abstraction made, which relieves researchers
from having to handle robot problems such as object recognition and movement.
This makes it possible to focus on higher level concepts such as learning and strategic
reasoning. The soccer server is commonly used as a research platform for exploring
different AI techniques [Tambe, 1997; Stone, 1998; Withopf and Riedmiller, 2005]. In
this chapter we give an overview of the different aspects of the simulator. Chen et al.
[2003]; De Boer and Kok [2002] describe a more detailed description.

A simulation soccer match is carried out in client-server style. The soccer server
provides a virtual soccer field, simulates all the movements of objects in this domain,
and controls a soccer game according to several rules. Each single player is controlled
by a separate client program which connects to the server. Each player independently
receives information about the current state of the world, and is able to send requests

6.2. ROBOCUP 109

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

UvA_Trilearn 4:3 TsinghuAeolus play_on 5573

��

Figure 6.1: The soccer monitor display. Note that the soccer field and all objects on it are
two-dimensional. The concept of ‘height’ thus plays no role in the simulation.
Each player is drawn as a circle and contains two different colored lines. The
black line defines the movement direction of the agent. The lighter grey line
represents the direction of its vision.

to the server to perform a desired action. The distributed interaction with the simu-
lator complicates the decision-making process because each agent individually has to
select its action based on its incomplete estimate of the current world state.

The soccer server is a pseudo real-time system that works with discrete time
intervals, called simulation cycles, each lasting 100ms. During this period, the agents
receive various kinds of sensory observations from the server and send action requests
to the server. A complex feature of the soccer server is that sensing and acting are
asynchronous. By default, clients can send action requests to the server once every
100ms, but they only receive visual information at 150ms intervals. It is only at
the end of a cycle that the server executes the actions and updates the state of the
environment. The server thus uses a discrete action model.

The simulator includes a visualization tool called the soccer monitor, which allows
people to see what happens within the server during a game. Fig. 6.1 shows a graphical
representation of the complete field modeled by the soccer server. Each player is drawn
as a circle and contains two different colored lines. The black line represents the front
part of the player’s body and defines the direction in which it can move. The lighter
grey line represents the player’s neck angle and represents the direction of its vision.

110 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

An agent has three different types of sensors with which it obtains information from
its environment: a visual sensor, a body sensor and an aural sensor. The visual sensor
provides visual information, such as the relative distance, direction, and velocity, of
the objects in the player’s current field of view. Objects that are observed include the
agent’s teammates, opponents, the ball, and several landmarks that are positioned
around the field. The latter are used to localize the agent. Noise is added to the
visual sensor data and is larger for objects that are further away. The view cone of
an agent has a limited width and as a result the agent only has a partial view of the
world and large parts of the state space remain unobserved. The body sensor reports
physical information about the player, such as its stamina, speed, and neck angle.
Finally, the aural sensor detects spoken messages which are sent by the other players.
Each agent hears at most one message every cycle. The soccer server communication
paradigm thus models a crowded, low-bandwidth environment in which the agents
from both teams use a single, unreliable communication channel [Stone, 1998].

An agent can perform different types of actions which can be divided into two
distinct categories: primary actions (kick, dash, turn, move, catch, and tackle), and
concurrent actions (say, turn neck, change view, sense body, and score). Most actions
are defined in one or more continuous-valued parameters. The dash command, for
example, accepts a parameter in the range [−100, 100] which specifies the amount of
acceleration in the agent’s body direction (negative is backwards). To each of the
actuator parameters noise is added such that the executed action is never exactly the
desired one. Each cycle only one primary action can be executed, whereas multiple
concurrent actions can be performed simultaneously with any primary action.

The soccer server simulates object movement stepwise in a simple way: the velocity
of an object is added to its position, while the velocity decays by a certain rate and
increases by the acceleration of the object resulting from specific action commands.
To reflect unexpected movements of objects in the real world, uniformly distributed
random noise is added to the movement of all objects. Furthermore, the soccer server
prevents players from constantly running at maximum speed by assigning a limited
stamina to each of them. When a player performs a dash command this consumes
some of its stamina but its stamina is also slightly restored in each cycle. If a player’s
stamina drops below a certain threshold this will affect the efficiency of its movement.

Each player in the simulator belongs to a player type with different abilities based
on certain trade-offs. For example, some types will be faster than others but they will
also become tired more quickly. At the start of a game, a set of different, randomly
generated, heterogeneous players is generated. A coach agent that receives noise-free
global information about all the objects on the soccer field is then allowed to select
the player types and substitute them when necessary during the game. The coach is
also a good tool for analyzing the strengths and weaknesses of the opponent team and
for giving advice to the players about the strategy during the dead-ball situations.

In order to create a soccer team a mapping has to be made, for each individual
agent separately, from the incoming perceptions to the low-level action commands
understood by the soccer server. Next, we explain how this is accomplished in our
simulated soccer team UvA Trilearn.

6.3. UVA TRILEARN 111

6.3 UvA Trilearn

UvA Trilearn is the simulated soccer team from the University of Amsterdam that
participated in the 2D competition of the RoboCup world championships from 2001
to 2005. In this section (that is largely based on De Boer and Kok [2002]) we describe
the basis functionality of UvA Trilearn, that is, its architecture, the world model, and
the skills available to the agents. The corresponding source code, which contains all
team functionality except the high-level decision-making process, has been released in
2003 and is used by many of the current teams.1 After this review, we then describe
our approach to select a coordinated action based on the current world state using
context-specific coordination graphs.

Functional architecture

A functional architecture concerns itself with the functional behavior that the system
should exhibit [Visser et al., 1999]. It describes what the system should be capable of
doing, independent of hardware constraints and environmental conditions. Complex
tasks, such as simulated robot soccer, can always be hierarchically decomposed into
several simpler subtasks. This naturally leads to agent architectures consisting of
multiple layers. The UvA Trilearn agent architecture, shown in Fig. 6.2, is a hybrid
approach between a hierarchical and a behavioral approach. The higher abstraction
levels are mainly decomposed hierarchically because high-level reasoning is completely
sequential, whereas the lower levels are more behavioral since the real-time control of
the system involves mostly parallel processing.

The hierarchical decomposition is divided into three progressive levels of abstrac-
tion which are represented by different architectural layers. The bottom layer is the
interaction layer which takes care of the interaction with the soccer server simulation
environment. This layer hides the soccer server details as much as possible from the
other layers. The middle layer is the skills layer which uses the functionality offered
by the interaction layer to build an abstract model of the world and to implement
the various skills of each agent, for example, a skill to intercept the ball. The highest
layer in the architecture is the control layer which contains the reasoning component
of the system. In this layer, the best possible action is selected from the skills layer
depending on the current world state and the current strategy of the team.

The UvA Trilearn agents are thus capable of perception, reasoning, and acting.
The setup for the agent architecture shown in Fig. 6.2 is such that these three activi-
ties can be performed in parallel, an important aspect of a behavioral architecture. A
separate thread is defined for each of the three main activities: the sense thread rep-
resents the perception module, the act thread represents the actuator control module,
and the think thread represents the modules from the skills layer and control layer.
Each thread works independently such that, for example, new visual information is
immediately processed when it arrives, and can be used by the think thread to select
an action that is based on the most up-to-date information.

1The package release is freely available from http://www.science.uva.nl/∼jellekok/robocup/.

http://www.science.uva.nl/~jellekok/robocup/

112 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

sense act

perception

sensors actuators

reasoning

refinement
action

control

think

modeling

actuatorinteraction layer

control layer

skills layer

Figure 6.2: The UvA Trilearn agent architecture.

Agent world model

In order to behave intelligently it is important that each agent keeps a world model
that describes the current state of the environment as accurate as possible. The agent
uses this world model to reason about the best possible action in a given situation.
The agents of the UvA Trilearn soccer simulation team keep a world model that
contains information about all the objects on the soccer field. This world model can
be seen as a probabilistic representation of the real world based on past perceptions.
For each object, among others, an estimation of its global position and velocity are
stored together with a confidence value that indicates the reliability of the estimate.
This confidence value is derived from the time stamp in which the estimate is made,
that is, if the estimate is based on up-to-date information the associated confidence
value will be high. The world model is updated as soon as new sensory information
is received by the agent and thus always contains the last known information about
the state of the world. When new sensory information is received, an agent first
updates its own global position in the world using a particle filter that uses the relative
information of the observed landmarks [Vlassis et al., 2002; De Boer and Kok, 2002].
Objects that are not observed are updated based on their previous estimated velocity
and their confidence is decreased. Furthermore, the world model contains several
methods which use this information to derive higher-level conclusions, for example,
the number of opponents in a certain area, or the probability that a pass to a specific
teammate succeeds.

6.3. UVA TRILEARN 113

High−Level Skills

Intermediate Skills

Low−Level Skills

Soccer Server Commands

Figure 6.3: The UvA Trilearn skills hierarchy consisting of three layers. The low-level skills
are based on soccer server commands, whereas the higher-level skills are based
on skills from the layer below.

Player skills

A skill can be regarded as the ability to execute a certain action. In general, these skills
can be divided into simple skills that correspond to basic actions and more advanced
skills that use the simple skills as parts of more complex behaviors. The skills which
are available to the UvA Trilearn agents include turning towards a point, kicking the
ball to a desired position, dribbling, intercepting the ball, and marking opponents.
Together, the skills form a hierarchy consisting of several layers at different levels of
abstraction. Fig. 6.3 shows the UvA Trilearn skills hierarchy which consists of three
layers. The layers are hierarchical in the sense that the skills in each layer use skills
from the layer below to generate the desired behavior. The bottom layer contains low-
level player skills which can be directly specified in terms of basic action commands
known to the soccer server. At this abstraction level the skills correspond to simple
actions such as turning towards a point. The middle layer contains intermediate skills
which are based on low-level skills. The skills in this layer do not have to deal with
the exact format of server messages anymore but can be specified in terms of the skills
from the layer below, for example, turning towards the ball. Finally, the skills at the
highest level are based on intermediate skills, for example, intercepting the ball. Note
that intermediate and high-level skills often depend on specific information that is
available in the current world model of the agent.

The behavior of the agent is the result of selecting an appropriate skill in a given
situation. The strategy of a team of agents can then be seen as the way in which the
individual agent behaviors are coordinated. For example, when one player passes the
ball, the agent to which the ball is passed should select a skill to anticipate the pass.
In the next section, we describe a method to select such coordinated skills using a
context-specific coordination graph.

114 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

6.4 Coordination in dynamic continuous domains

A team of agents that is faced with a decision-making problem, has to tackle the
issue of coordination. As the agents share a common performance measure, they
have to coordinate their individual actions in order to maximize team performance.
In the RoboCup simulation domain, for example, the agent that controls the ball
must coordinate with its surrounding teammates in order to perform a pass, and the
defenders must coordinate to position themselves such that they cover as much space
as possible. In principle game-theoretic techniques can be applied to solve such a
coordination game (see Section 2.3.4). The problem with this approach, however,
is that it becomes intractable to model practical problems involving many agents
because the joint action space is exponential in the number of agents. However, the
particular structure of the coordination problem can often be exploited to reduce its
complexity [Kok et al., 2003, 2005b]. Such dependencies can be modeled by a context-
specific coordination graph (context-specific CG), see Section 5.2, that satisfies the
following requirements: (i) its connectivity should be dynamically updated based on
the current, continuous, state, (ii) it should be sparse in order to keep the dependencies
and the associated local coordination problems simple, (iii) it should be applicable in
situations where communication is unavailable or very expensive.

In the remainder of this section, we will describe our coordination method, de-
signed to fulfill the requirements mentioned above. Our proposed method involves
two main features. The first is the assignment of roles to the agents in order to apply
context-specific CGs to continuous domains and to reduce the action sets of the dif-
ferent agents; the second is to predict the chosen action of the other agents, rendering
communication superfluous. As a main example we will use the RoboCup simulation
soccer domain described in Section 6.2.2.

6.4.1 Context-specificity using roles

Context-specific coordination graphs (context-specific CGs), as described in Sec-
tion 5.2, are a natural way to specify the coordination requirements of a system.
This framework uses value rules to specify the coordination dependencies for a spe-
cific context. Value rules can be regarded as a compact representation of the complete
state-action space since they are defined over a subset of all state and action variables.
Each rule that is applicable to the current state and selected joint action contributes
a certain value to the system. The rule-based variable elimination or max-plus algo-
rithm, see respectively Section 5.2 and Section 3.3, can be used to compute the joint
action that maximizes the sum of the values that are applicable for the current state.

A limitation of a context-specific CG, however, is that it is based on propositional
rules and therefore only directly applies to discrete domains. In this chapter we are
interested in robots that are embedded in continuous domains. Conditioning on a
context that is defined over a continuous domain is difficult. One solution would be
to divide the state space into small discrete partitions, either directly or using tile

6.4. COORDINATION IN DYNAMIC CONTINUOUS DOMAINS 115

codings [Albus, 1971; Sutton and Barto, 1998], and then apply the original context-
specific CG approach. The problem, however, is that the resulting state space becomes
very large and many coordinated rules are required to specify the team behavior.

A different way to ‘discretize’ the context is by assigning roles to the agents
[Stone and Veloso, 1999; Spaan et al., 2002; Iocchi et al., 2003; Vlassis, 2003]. Roles
are a natural way of introducing domain prior knowledge to a multiagent problem and
provide a flexible solution to the problem of distributing the global task of a team
among its members. In the soccer domain for instance one can easily identify several
roles ranging from ‘active’ or ‘passive’ depending on whether an agent is in control of
the ball or not, to more specialized ones like ‘striker’, ‘defender’, or ‘goalkeeper’.

Tambe [1997] defines a role as an abstract specification of the set of activities
an individual or subteam undertakes in service of the team’s overall activity. In
our framework the set of activities for a role m ∈ M is represented as a set of
value rules fm. For a given role assignment only one set applies. This simplifies the
context-specific CG substantially because many dependencies related to other roles
can be ignored. Furthermore, the role assignment can be used to specify additional
constraints for the other agents involved in the value rule, reducing the number of
dependencies in the CG even further. For example, agent i that controls the ball in
role ‘goalkeeper’ only has to consider passes to agents in the role of ‘defender’. This
situation can be represented using the following value rule:

〈pgoalkeeper
1 ; has-ball(i) ∧ has-role-defender(j) ∧ ai = passTo(j) : 10〉

Fig. 6.4 shows the substantially reduction of the number of dependencies in a
typical soccer situation when roles are assigned. Fig. 6.4(a) shows a fully connected
CG in which each agent is connected to all other agents. Fig. 6.4(b) shows the CG
before assigning the roles to the agents and consists of all possible dependencies for
all possible roles. Finally, Fig. 6.4(c) shows the CG after the role assignment for
the situation that the ball is in the left midfield. In this example, the bottom agent
takes the role of sweeper while the other three take the role of defender. The sweeper
covers the space between the defenders and the goalkeeper to allow the defenders
to advance to support the attack. As long as the four agents agree on their role
assignment the problem of their coordination is simplified: the defenders only need
to take into account the action of the sweeper in their strategy (apart from other
factors such as the opponents), ensuring it is the most retracted field player. In their
local coordination game they do not need to consider other teammates such as the
goalkeeper or the attackers. Several other local coordination games could be going
on at the same time. For example, in the attack the player with the ball has to
coordinate with the players that are able to receive a pass.

The context-specific CG is continuously updated to reflect the current situation
on the field. Given a particular local situation, each agent is assigned a role that
is computed based on a role assignment function that is common knowledge among
the agents. In the communication based case, we use a distributed role assignment
algorithm [Castelpietra et al., 2000; Spaan et al., 2002; Vlassis, 2003]. This algorithm,

116 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

(a) (b)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(c)

Figure 6.4: Applying coordination graphs using roles in a typical soccer situation. The
black circles represent the opponent agents and the open circles show the agents
in our team. (a) A fully connected CG, in which each agent is connected to
all other agents. (b) A reduced CG in which each agent is connected to its
neighbors for all possible role assignments. (c) The resulting CG after the role
assignment in case the ball is in the left midfield.

which is common knowledge among the n agents, defines a sequence of roles M ′, with
|M ′| ≥ n, which represents a preference ordering over the roles: the most ‘important’
role is listed first in the ordering and is assigned to an agent first, the second most
important role is second in the ordering, etc. The same role can be assigned to more
than one agent, that is, M ′ can contain multiple copies of the same role, but each
agent is assigned only a single role. Each role m has an associated potential rim which
is a real-valued estimate that specifies how appropriate agent i is for the role m in
the current world state. These potentials rim depend on features of the state space
relevant for role m as observed by agent i. For example, relevant features for the role
‘striker’ are the time needed to intercept the ball or its position. Each agent computes
its potential for each m ∈ M and sends these to the other agents. The first role m in
the sequence M ′ is assigned to the agent that has the highest potential for that role.
The process proceeds with assigning the second role m′ ∈ M ′ to the remaining agent
with the highest potential for the role m′. This process continues until all agents are
assigned a role. This algorithm requires sending O(|M |n) messages, as each agent has
to send each other agent its potential rim for all m ∈ M .

For example, lets assume we have a problem with three agents and the roles M =
{passer, receiver} based on the priority sequence M ′ = {passer, receiver, receiver}.
Each agent computes the potentials for the passer and receiver role and then com-
municates these to the other agents. The agent that has the highest potential for the
passer role, which is the first element in the priority sequence, assigns itself this role,
and the remaining two agents assign themselves the receiver role.

6.4. COORDINATION IN DYNAMIC CONTINUOUS DOMAINS 117

An assignment of roles to agents provides a natural way to parameterize a coordi-
nation structure over a continuous domain. The intuition is that, instead of directly
coordinating the agents in a particular situation, we assign roles to the agents based on
this situation and then try to ‘coordinate’ the set of roles. The roles can be regarded
as an abstraction of a continuous state to a discrete context, allowing the application
of existing techniques for discrete-state CGs. Roles also reduce the action space of the
agents by ‘locking out’ specific actions. For example, the role of the goalkeeper does
not include the action ‘score’, and in a ‘passive’ role the action ‘shoot’ is deactivated.

6.4.2 Non-communicating agents

In order to coordinate the different agents using predefined role-specific value rules
requires communication in different stages. For the role assignment, each agent has
to communicate its potential for a certain role to all other agents. For computing the
optimal joint action given the applicable value rules (we assume the variable elimina-
tion (VE) algorithm from Section 5.2 is used), each agent receives the relevant value
rules of its neighboring agents, and communicates its computed conditional strategy
to its neighbors. Similarly, in the reverse process each agent needs to communicate
its decision to its neighbors in order to reach a coordinated joint action.

In many practical dynamic situations, the agents may not be able to communicate
with all neighbors, nor have the time to finalize all communication before assigning
the roles and selecting an action, due to failures or time constraints. However, we can
still apply a similar procedure if we make some common knowledge assumptions.

In order to determine the role assignment without using communication, each
agent i computes, in parallel, the potentials rjm for all roles m ∈ M and all agents j
located in the subgraph in which agent i is involved. This can only be done when
agent i has access to the potential functions and the state variables that are relevant
for computing the potential of the agents in its subgraph. After computing all po-
tentials, the actual assignment of roles to agents is equal to the procedure described
earlier. During the non-communicative role assignment, each agent computes at most
O(|M |n) potentials and thus runs in time polynomial in the number of agents and
roles. This is in contrast to the communicating case where each agent only has to
compute O(|M |) potentials but in total O(|M |n) potentials are communicated.

After the role assignment, the optimal joint action is computed. We can use
the VE algorithm without using communication if we assume the value rules of an
agent i are common knowledge among all agents that are reachable from i. Since only
connected agents need to coordinate their actions, this frees them from communicating
their local value rules during optimization. Furthermore, in order to condition on the
current state and construct the CG corresponding to the current situation each agent
also has to observe the state variables of the agents located in its subgraph.

In order to perform the VE algorithm, agent i starts with eliminating itself and
keeps removing agents until it computes its own optimal action unconditionally on
the actions of the others. In the worst case, agent i needs to eliminate all agents j 6= i,
for j reachable from i. Each agent thus runs the complete algorithm by itself in order

118 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

to determine its own action. The main difference with the communicating case occurs
in the reverse pass. When multiple best-response actions contribute the same local
value to the global payoff, the eliminated agent can randomly choose one of these
actions in the communication case. When every agent models the complete algorithm
individually, we have to ensure that the different agents select the same action. This
can be accomplished by imposing the additional constraint that the ordering in the
actions sets of the agents is common knowledge.

In the non-communicative case the elimination order neither has to be fixed in ad-
vance nor has to be common knowledge among all agents as in [Guestrin et al., 2002c].
Each agent is free to choose any elimination order because a particular elimination
order affects only the speed of the algorithm and not the computed joint action.

In terms of complexity, the computational costs for each individual agent are
clearly increased to compensate for the unavailable communication because, in the
worst case, each agent has to calculate the action of every other agent in the subgraph,
instead of only optimizing its own action. The computational cost per agent increases
linearly with the number of new payoff functions generated during the elimination
procedure. Communication, however, is not used anymore which allows for a speedup
since these extra individual computations can run in parallel. This is in contrast to
the original CG approach where computations need to be performed sequentially.

To summarize, we can apply the CG framework without communication when all
agents are able to run the same algorithm in parallel. For this, we require that

• the payoff functions of an agent i are common knowledge among all agents
reachable from i,

• each agent i can compute the potential rjm for all roles m ∈ M and all agents j
in its subgraph,

• the action ordering is common knowledge among all agents,

• each agent i observes the state variables located in the value rules of all agents
reachable from agent i.

Finally, we note that the common knowledge assumption is strong and even in
cases where communication is available it cannot always be guaranteed [Fagin et al.,
1995]. In multiagent systems without communication common knowledge is guaran-
teed if all agents consistently receive the same observations of the true world state,
but this is violated in practice due to partial observability of the environment, for
example, a soccer player has a limited field of view. In our case, the only requirement
we impose is that in a particular local context the role assignment is based on those
parts of the state that are, to a good approximation, fully observable by all involved
agents. In a soccer game, for example, deriving the particular role assignment only
requires that the players know the position of the nearby players, and have a rough
estimate of the ball position. As long as such a context is encountered, a local graph
is formed which is disconnected from the rest of the CG and can be solved separately.

6.5. EXPERIMENTS 119

6.5 Experiments

In this section, we apply the aforementioned framework to our simulation robot soccer
team UvA Trilearn [De Boer and Kok, 2002]. The main motivation is to improve
upon the coordination during ball passes between teammates. First, we conduct an
experiment in which a complete team strategy is specified using predefined value rules.
During a game, each player selects its action based on the result of the VE algorithm.
In this case we assume the world is fully observable and the agents thus do not need
to communicate. Second, we incorporate this framework in our competition team for
the RoboCup-2003 World Championships. Because in competition matches the world
is only partially observable, we make some additional assumptions and modifications
to the algorithm. Next, we describe both approaches in more detail.

6.5.1 Full observability

In this section we describe how we construct a complete team strategy for our UvA
Trilearn robot simulation team using predefined role-specific value rules. The whole
procedure to compute the action for an individual agent consists of three steps: the
role assignment, updating the context-specific CG based on the current state, and
applying the VE algorithm to compute the optimal joint action.

We specify three different roles M = {active, receiver,passive}. The first and most
important role is that of the active player which performs an action with the ball.
We distinguish between two different types of active players, interceptor and passer,
depending whether the ball can be kicked by the active player or not. Furthermore,
we have the role of receiver, a player who is located at a good position to receive the
ball, and the passive role, which indicates that the player does not actively take part
in the current situation. We specify the following role sequence:

M ′ = {active, receiver, receiver,passive,passive,

passive,passive,passive,passive,passive}.

Remember that the roles are assigned to the agents in this order. We thus first
assign the role of active player. Furthermore, we always assign two players the role
of receiver. The remaining seven players are assigned the role of passive player. Note
that we only assign ten roles and thus disregard the goalkeeper.

In order to determine the role assignment, each agent computes its potential for
the three different roles. The agent with the highest potential for the first role in
the sequence M ′ is assigned that role. Then the process continues by assigning the
remaining roles in M ′ until all roles have been assigned. The corresponding potentials
for each role are computed as follows:

• The potential ri,active, which indicates how appropriate player i is for the active
role, is equal to 1/ti where ti > 0 is the predicted time it will take player i
to intercept the ball. For this, we use the modification of Newton’s Method
as described in [Stone and McAllester, 2001]. This method finds the least root

120 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

(equal to the first possible interception time) of the function that represents
the difference between the traveled distance of the ball and the movement of
player i. The specific active role, passer or interceptor, that is assigned to
the agent depends on the relative distance to the ball. When the ball is close
enough to be kicked, the agent is assigned the role of passer, otherwise the role
of interceptor.

• The potential for the role of receiver ri,receiver, is based on the distance di,b

between player i and the ball and the relative distance between player i and the
opponent goal di,g as follows:

ri,receiver =







1/max(1, di,g) + 1 if di,b < k

1/max(1, di,g) otherwise
(6.1)

This function states that there is a preference for agents that are located close
to the opponent goal. Furthermore, an additional reward is given when the ball
is within a range of k = 28 meters to player i. The specific value of 28 metes
corresponds to the maximal traveled distance of the ball when it is shot with
maximal velocity. Agents outside this range are thus only taken into consider-
ation as receiver when there is no nearby alternative.

• The potential ri,passive for the role of passive player is a constant such that all
remaining agents are assigned to this role.

Given the role assignment, we specify the coordination dependencies between the
different roles using value rules. Before we give the actual value rules, we list the
relevant action and state variables. We first define the different actions, which are all
directly available in the base code of the UvA Trilearn team as described in Section 6.3:

• passTo(i, dir): pass the ball to a position with a fixed distance from agent
i in the direction dir ∈ D = {center, n, nw,w, sw, s, se, e, ne}. The direction
parameter specifies a direction relative to the receiving agent. ‘North’ is always
directed toward the opponent goal and ‘center’ corresponds to a pass directly
to the current agent position,

• moveTo(dir): move in the direction dir ∈ D,

• dribble(dir): move with the ball in direction dir ∈ D,

• score: shoot to the best spot in the opponent goal [Kok et al., 2002],

• clearBall: shoot the ball with maximum velocity between the opponent defend-
ers to the opponent side,

• moveToStratPos: move to the agent’s strategic position. This position is com-
puted based on the agent’s home position and the position of the ball which
serves as an attraction point [De Boer and Kok, 2002].

6.5. EXPERIMENTS 121

We also define different boolean state variables that extract important (high-level)
information from the world state:

• is-pass-blocked(i, j, dir) indicates whether a pass from agent i to agent j is
blocked by an opponent or not. The actual position to which is passed is the
position at a small fixed distance from agent j in direction dir. A pass is blocked
when there is at least one opponent located within a cone from the passing player
to this position.

• is-empty-space(i, dir) indicates that there are no opponents within a small circle
in the specified direction dir of agent i.

• is-in-front-of-goal(i) returns whether agent i is located before the opponent goal.

We can now define the complete strategy of our team by means of value rules which
specify the contribution to the global payoff in a specific context. Fig. 6.5 shows all
value rules. The rules are specified for each player i and make use of the above defined
actions and state variables. Note that we enumerate all rules using variables. The
complete list of value rules is the combination of all possible instantiations of these
variables. In all rules, dir ∈ D.

The first five rules are related to the action options for the active player. The first
rule, p1, indicates that intercepting the ball is the only option when performing the
interceptor role. As a passer, there are several alternatives. Value rule p2 represents
an active pass to the relative direction dir of player j which can be performed when
there are no opponents along that trajectory and the receiving agent will move in that
direction to intercept the coming pass. The value contributed to the global payoff is
returned by u(j, dir) and depends on the position where the receiving agent j will
receive the pass, that is, the closer to the opponent goal the better. The next three
rules indicate the other individual options for the active player: dribbling (we only
allow forward dribbling), clearing the ball, and scoring. Rule p6 indicates the situation
in which a receiver already moves to the position it expects the current interceptor
to pass the ball to when it reaches the ball. Using the same principle, we can also
create more advanced dependencies. For example, rule p7 indicates that a receiver
can already move to a position it will expect the receiver of another pass to shoot
the ball to. Rule p8 describes the situation in which a receiving player moves to its
strategic position. This action is only executed when it is not able to coordinate with
one of the other agents, since it has a small payoff value. Finally, rule p9 contains the
single action option for a passive player that always moves to its strategic position.

When the nine basic rules are instantiated, there are 204 value rules in total. We
illustrate that even with such a rather small set of rules a complete, although simple,
team strategy can be specified that makes explicit use of coordination. Furthermore,
the rules are easily interpretable which makes it possible to add prior knowledge into
the problem. Another advantage is that the rules are very flexible: existing rules can
directly be added or removed. This makes it possible to change the complete strategy
of the team when playing different kinds of opponents.

122 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

〈pinterc.
1 ; intercept : 10〉

〈ppasser
2 ; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧
ai = passTo(j, dir) ∧
aj = moveTo(dir) : u(j, dir) ∈ [5, 7]〉 ∀j 6= i

〈ppasser
3 ; is-empty-space(i,n) ∧

ai = dribble(n) : 2〉
〈ppasser

4 ; ai = clearBall : 0.1〉
〈ppasser

5 ; is-in-front-of-goal(i) ∧
is-ball-kickable(i) ∧
ai = score : 10〉

〈preceiver
6 ; has-role-interceptor(j) ∧

¬isPassBlocked(j, i, dir) ∧
aj = intercept ∧
ai = moveTo(dir) : u(i, dir) ∈ [5, 7]〉 ∀j 6= i

〈preceiver
7 ; has-role-receiver(k) ∧

¬isPassBlocked(k, i, dir) ∧
aj = passTo(k, dir2) ∧
ak = moveTo(dir2) ∧
ai = moveTo(dir) : u(i, dir) ∈ [5, 7]〉 ∀j, k 6= i

〈preceiver
8 ; moveToStratPos : 1〉

〈ppassive
9 ; moveToStratPos : 1〉

Figure 6.5: A complete team strategy specified using value rules.

6.5. EXPERIMENTS 123

We will now look into an example of how the above rules are used in practice.
We assume the world is fully observable (this is a configuration setting in the soccer
server) and each agent can thus model the complete CG algorithm separately. This is
necessary since the RoboCup soccer simulation does not allow agents to communicate
with more than one agent at the same time, which makes it impossible to apply the
original VE algorithm. This has no effect on the outcome of the algorithm.

For a given situation, the roles are assigned first. Then the agents condition on
the state variables and determine the applicable rules. We now consider the ex-
ample configuration depicted in Fig. 6.6. Agent 1 has control of the ball and is
assigned the passer role. Agent 2 and agent 3 are the two receivers and all other
players are passive. This assignment of roles defines the structure of the coordination
graph. Note that the construction of the CG is performed after every new obser-
vation, and the graph structure thus changes dynamically as the state of the world
changes. By construction an agent in a passive role always performs the same individ-
ual action, namely, moving towards its strategic position that is based on the current
position of the ball [Reis et al., 2001; De Boer and Kok, 2002]. This drastically sim-
plifies the coordination graph since there are no dependencies between the passive
agents. Furthermore, we assume only the state variables ¬isPassBlocked(1, 2, s) and
¬isPassBlocked(2, 3,nw) are true. This corresponds to the following set of value rules
that are applicable in this situation:

A1 : 〈ppasser
2 ; a1 = passTo(2, s) ∧

a2 = moveTo(s) : 6〉,
〈ppasser

3 ; a1 = dribble(n) : 2〉,
〈ppasser

4 ; a1 = clearBall : 0.1〉,
A2 : 〈preceiver

8 ; a2 = moveToStratPos : 1〉,
A3 : 〈preceiver

7 ; a1 = passTo(2, dir) ∧
a2 = moveTo(dir) ∧
a3 = moveTo(nw) : 5〉, ∀dir ∈ D,

〈preceiver
8 ; a3 = moveToStratPos : 1〉.

In order to compute the joint action that maximizes the applicable rules’ values,
we apply the rule-based VE algorithm. We do not apply the max-plus algorithm
(Chapter 3) because it is not able to directly cope with the value-rule representation.
The max-plus algorithm operates by sending messages that specify the value for each
possible action of an agent, and therefore requires an enumeration over all possible
actions. The rule-based VE method on the other hand communicates conditional
strategies which only contain the relevant actions, represented as value rules. An-
other reason to use the VE algorithm is that, as shown in Section 3.4, the max-plus
algorithm only outperforms the VE algorithm for large agent networks with many
dependencies. In this problem, at most three agents are involved.

124 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

���
���
���

���
���
���

n

1 2

3

Figure 6.6: A situation involving one passer and two receivers. All other agents are passive.

In the VE algorithm, each agent is eliminated from the graph by maximizing its
local payoff. In the case that agent 1 is eliminated first, it gathers all value rules that
contain a1, maximizes its local payoff and distributes its conditional strategy to its
neighbors. This conditional strategy corresponds to the following set of value rules:

〈ppasser
10 ; a2 = moveTo(s) ∧

a3 = moveTo(nw) : 11〉,
〈ppasser

11 ; a2 = moveTo(s) ∧
a3 = ¬moveTo(nw) : 6〉,

〈ppasser
12 ; a2 = ¬moveTo(s) : 2〉.

Note that ppasser
10 is formed by combining ppasser

2 and preceiver
7 when both agent 2

and 3 fulfill the listed actions. When agent 3 performs a different action, the payoff is
still 6 when agent 2 moves south as is stated in ppasser

11 . When agent 2 also performs
a different action, the only remaining action is the dribble with a payoff of 2. After
agent 2 and 3 have also fixed their strategy, agent 1 will perform passTo(2, s), agent 2
will execute moveTo(s) to intercept the pass and agent 3 will perform moveTo(nw) to
intercept a possible future pass of agent 2. During a match, this procedure is executed
after each update of the state and the agents will change their action based on the
new information. If, for some unpredicted reason, the first pass fails in this example,
the graph will automatically be updated and correspond to the new situation.

In order to test our approach, we play games using the released basic client im-
plementation of our UvA Trilearn team, as described in Section 6.3). We experiment
with three different versions. All three versions use an identical implementation of
the low-level behaviors, for example, the kick and the intercept, and thus only differ
with respect to their high-level strategy. The first version is identical to the released
implementation and is used as a benchmarking version. In this version the active
player always intercepts the ball and immediately kicks it with maximal velocity to

6.5. EXPERIMENTS 125

0

20

40

60

80

100

of goals

ball possession %

successful passing %

of shots on goal

ball each side %

(a) Coordinated team vs. benchmark team.

0

20

40

60

80

100

of goals

ball possession %

successful passing %

of shots on goal

ball each side %

(b) Non-coordinated vs. benchmark team.

0

20

40

60

80

100

of goals

ball possession %

successful passing %

of shots on goal

ball each side %

(c) Non-coordinated and coordinated team vs.
benchmark team.

0

20

40

60

80

100

of goals

ball possession %

successful passing %

of shots on goal

ball each side %

(d) Coordinated vs. non-coordinated team.

Figure 6.7: Mean and standard deviation of several statistics for the three tested teams.
All results are averaged over 10 matches.

a random corner of the opponent goal. The second version uses explicit coordination
using the value rules depicted in Fig. 6.5. The third and final version does not use
explicit coordination during passing. This is modeled by deleting the rules p6, p7 from
the list of value rules and removing the condition aj = moveTo(dir) from rule p2. A
receiver thus does not explicitly anticipate a pass. Now, in the non-coordinating case
a teammate moves to the interception point only after it observes a change in the
ball velocity, that is, after someone has passed the ball, and it is assigned the role of
interceptor. Before the ball changes velocity, it has no notion of the fact that it will
receive the ball and does not coordinate with the passing player.

Since many different factors contribute to the overall performance of the team, it is
difficult to measure the actual effect of the coordination with one single value. There-
fore, we generate multiple statistics using the statistics proxy server tool [Frank et al.,
2001]. Fig. 6.7(a) and Fig. 6.7(b) show the game statistics for the coordinating and

126 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

stage comp. time (ms) nr. of samples

Initialization 7.15 (4.45) 100

Role assignment 0.16 (0.24) 602, 865

CG Role Passive 0.01 (0.002) 472, 108

CG Role Interceptor 0.01 (0.002) 45, 950

CG Role Receiver

Condition step 3.94 (4.74) 72, 307

Elimination step 34.87 (72.15) 72, 307

Nr of applicable rules 25.69 (29.34) 72, 307

CG Role Active

Condition step 4.15 (4.61) 12, 500

Elimination step 48.93 (96.83) 12, 500

Nr. of applicable rules 27.69 (30.65) 12, 500

Table 6.1: Average computation times (in ms) with the standard deviation (between brack-
ets), for the different stages of the algorithm. Results are generated on an AMD
Athlon 1.5GHz/512MB computer. The results are combined for all players’
actions over the course of 10 full-length games and are averaged over all players.

the non-coordinating team against the benchmark team averaged over 10 full-length
games. These results show that both teams are able to defeat the benchmark team
with considerable goal difference on all occasions (respectively 12.4− 0 and 10.6− 0).
In Fig. 6.7(c) these statistics are directly compared with each other indicating that
the coordinating team slightly outperforms the non-coordinating team. Fig. 6.7(d)
shows the same statistics in the case the coordinating team plays against the non-
coordinating team. In this setting, the coordinating team won 8 out of the 10 matches,
drew one, and lost one. The average score was 5.2 − 2.6. Almost all statistics show
a performance improvement for the coordinating team. For example, the successful
passing percentage was 94.55% for the team with the coordinated value rules and
79.76% for the team without. These percentages indicate that due to the better
coordination of the teammates, fewer mistakes were made when the ball was passed
between teammates. This also has a positive effect on the other statistics, for example,
number of shots on goal and the location of the ball on the field.

Table 6.1 shows the timing results for the different stages of the framework during
the matches of the coordinating team against the non-coordinating team. For the
non-coordinating team, the time to determine an action was approximately 3 ms in
total for both the receiver and the passer on an AMD Athlon 1.5GhZ/512MB ma-
chine. The coordinating team requires more computation time. This is mainly caused
by the computation performed during the VE algorithm. On average the time needed

6.5. EXPERIMENTS 127

0 20 40 60 80 100 120
−50

0

50

100

150

200

250

300

350

400

450

value rules

co
m

pu
ta

tio
n

tim
e

(m
s)

Figure 6.8: The computation time (ms) needed to determine an action given the number
of value rules that are applicable in the current context.

for determining an action was 25.69 ms for the receivers. The computation time
is strongly related to the number of applicable value rules for a specific situation.
On average approximately 25 value rules were applicable after conditioning on the
context. However, situations occurred in which considerable more value rules were
applicable. In these cases, the computation time also increased considerably. Fig. 6.8
shows the relationship between the number of value rules and the computation time.
As the number of applicable value rules increases, the best-response function has to
take more (action) combinations of value rules into account, slowing down the compu-
tation. Note that the use of the max-plus algorithm would not have a positive effect
because, as explained earlier, it cannot take advantage of the rule-based representation
and always has to enumerate all possible action combinations.

6.5.2 Partial observability

We applied the framework described in the previous section to specify the high-level
strategy in our UvA Trilearn 2003 team that participated, among others, in the
RoboCup-2003 competition. In order to participate in the competition, we had to
adapt the framework for (i) the partially observability of the domain and (ii) the
real-time requirements of the simulator (100 ms per cycle).

The common knowledge assumption about the fully observable state cannot be
made during competition matches since every agent only receives information of the
part of the field to which its neck is oriented. However, the structure of the CG after
the role assignment specifies which parts of the state are relevant for coordination,
that is, the neighbors in the graph and their associated state variables. Therefore,
we adjust the looking mechanism of the agents to actively orient their neck to the
part of the field in which its neighbors in the graph are located and then assume that

128 CHAPTER 6. DYNAMIC CONTINUOUS DOMAINS

tournament place goals nr. of teams

German Open 1st 136 − 0 12

American Open 1st 100 − 0 15

RoboCup-2003 1st 177 − 7 46

Table 6.2: Tournament results UvA Trilearn 2003.

this part of the world is common knowledge among these agents. When all involved
agents observe this information they can independently solve the local graph which
is disconnected from the rest of the CG and so compensate for the missing state
information. In our example, the passer and the receivers thus change their looking
direction to their neighbors in the graph in order to get a good approximation of
the relevant part of the state needed for coordination, and are not interested in the
passive players which are not connected to its subgraph.

In order to comply with the real-time complexities of the simulator, the timing
results of the previous section had to be improved. On average a single player has
approximately 10 ms in order to determine its action using our synchronization scheme
[De Boer and Kok, 2002]. Therefore, we included an additional preprocessing step
during the conditioning in which for each of the nine basic rules and for each possible
receiver only the value rule was kept that gave the highest reward. For example, a pass
in the northern direction to a receiver has always precedence over a pass in southern
direction and therefore we can remove the value rule related to the southern pass.
This has no influence because these coordinated passes are independent of the actions
of the other agents. This reduces the number of value rules and makes sure that the
agents are able to keep their computation time within the given time constraints.

Finally, in order to improve the actual performed pass, we did not directly map the
returned high-level actions from the CG algorithm to a primary action. Instead, given
the returned receiver and direction, we evaluated multiple passes for different angles
and different speeds in that direction using the modification of Newton’s method
[Stone and McAllester, 2001] and selected the action that maximized the capture time
between the receiver and the fastest opponent. This procedure can be regarded as a
two-layered hierarchy in which a high-level action based on the global coordination
situation is refined to a specific action which takes the local situation into account.

We applied this approach to our UvA Trilearn 2003 team. Using this approach,
UvA Trilearn was able to win all three tournaments in 2003 in which it participated.
This included the RoboCup-2003 World Championships in Padova, Italy, for which 46
teams had qualified. In total 16 matches were played in this competition, resulting in
a total goal difference of 177 − 7. In the final UvA Trilearn defeated TsinghuAeolus,
the winner of 2001 and 2002, with a score of 4− 3. The successful passing percentage
in the final was 91.43% for UvA Trilearn against 82.87% for TsinghuAeolus. Table 6.2
shows all tournament results of UvA Trilearn 2003.

6.6. DISCUSSION 129

6.6 Discussion

In this chapter, we proposed two extensions to the framework of context-specific coor-
dination graphs (context-specific CGs) [Guestrin et al., 2002c] for the situation that
the agents are embedded in a continuous domain and communication is unavailable.
First, we assigned roles to the agents in order to abstract from the continuous state
to a discrete context, allowing the application of existing techniques for discrete-state
CGs. The notion of roles we use is similar to the ones described in [Spaan et al.,
2002; Iocchi et al., 2003; Stone and Veloso, 1999; Vlassis, 2003]. In these settings, the
agents have knowledge about different roles which specify an agent’s internal and ex-
ternal behaviors. Agents can at any time switch between the different roles based on
external events or after negotiation. In these cases, coordination is the result of the
different agents performing subtasks corresponding to their assigned role. In our case,
the role assignment also defines the coordination structure, and the CG framework
is used to coordinate the individual actions of the agents. This approach is based
on value rules that specify the kind of coordination for a specific context and is very
flexible, since existing rules can directly be added or removed. This makes it possible
to change the complete strategy of the team when playing different opponents.

Furthermore, we showed that we can dispense with communication if additional
assumptions about common knowledge are introduced. This makes it possible to
model the reasoning process of the other agents, making communication unnecessary.
This bears resemblance to the concept of a locker-room agreement [Stone and Veloso,
1999] which facilitates coordination with little or no communication. It provides
a mechanism for predefining multiagent protocols that are accessible to the whole
team. As a result the agents act autonomously during execution, while still working
towards a common goal that is specified beforehand. This approach is similar to our
common knowledge assumptions about the value rules of the reachable agents in the
graph which make communication superfluous. Applying our coordination framework
to our UvA Trilearn robot soccer simulation team resulted in improved coordinated
behavior of the agents and in three RoboCup tournament wins in 2003.

7

Conclusions

Decision making in cooperative multiagent systems is an important topic since many
large-scale applications are formulated in terms of spatially or functionally distributed
entities, or agents. Collaboration enables the different entities to work more efficiently
and to complete activities they are not able to accomplish individually. However, in
order to collaborate the agents should (learn to) coordinate their actions. This is a
complicated process because the number of action combinations grows exponentially
with an increase of the number of agents, and each agent takes individual decisions of
which the outcome can be influenced by the actions performed by the other agents.

This thesis contributes several techniques to coordinate and learn the behavior of
the agents in cooperative multiagent systems. This final chapter presents several con-
cluding remarks on the work described in this thesis and highlights its contributions.
Furthermore, it discusses several promising directions for future research.

7.1 Conclusions and contributions

This thesis studied both the problem of coordinating the behavior of multiple agents
in a specific situation, and learning the behavior of a group of agents in sequential
decision-making problems using model-free reinforcement-learning techniques. One of
the main approaches in all presented methods is to simplify the coordination problem
by exploiting the actual dependencies that exist between the agents. These depen-
dencies are modeled using the coordination graph (CG) framework [Guestrin et al.,
2002a]. This framework decomposes a global payoff function into a sum of local payoff
functions. Each local payoff function depends on the actions of a subset of the agents
and specifies a contribution to the system for every possible action combination of the
involved agents. A CG can be depicted using a graph in which the nodes represent the
agents and the edges indicate a coordination dependency. A coordination dependency
is added between all agents that are involved in the same local payoff function.

In Chapter 3, we addressed the problem of coordinating the actions of a large group
of agents in a specific situation. We assumed the coordination dependencies with the
corresponding payoff functions between the agents were given and modeled as a CG.
Our contribution is the max-plus algorithm that can be used as an alternative to
variable elimination (VE) for finding the optimal joint action. VE is an exact method
that always reports the joint action that maximizes the global payoff, but is slow for

132 CHAPTER 7. CONCLUSIONS

densely connected graphs with cycles as its worst-case complexity is exponential in
the number of agents. The max-plus algorithm, analogous to the belief propagation
algorithm in Bayesian networks, operates by repeatedly sending local payoff messages
over the edges in the CG. By performing a local computation based on its incoming
messages, each agent is able to select an individual action. For large, highly connected
graphs with cycles, we showed that max-plus finds good solutions exponentially faster
than VE. Our anytime extension occasionally evaluates the current joint action and
stores the best one found so far. This ensures that the agents select a coordinated
joint action and essentially produces a convergent max-plus variant. The max-plus
algorithm can be implemented fully distributed and, contrary to VE, only requires
that each agent communicates with its neighbors in the original CG.

In Chapter 4, we investigated the problem of learning the coordinated behavior
of the agents in sequential decision-making problems. The latter were modeled using
a collaborative multiagent Markov decision process (collaborative MMDP) [Guestrin,
2003]. Our contribution is a family of model-free reinforcement-learning variants,
called sparse cooperative Q-learning (SparseQ), which approximate the global Q-
function using the structure of a given CG. We analyzed both a decomposition in
terms of the nodes, as well as one in terms of the edges of the graph. During learning,
each local Q-function is updated based on its contribution to the maximal global
action value found with either the VE or max-plus algorithm. All methods can be
implemented fully distributed as long as each agent is able to communicate with its
neighbors in the graph. Results on both a stateless problem with 12 agents and more
than 17 million actions, and a distributed sensor network problem indicated that our
SparseQ variants outperform other existing multiagent Q-learning methods.

In Chapter 5, we studied solution methods for multiagent sequential decision-
making problems that are able to learn based on changing coordination structures.
Our contribution is context-specific sparse cooperative Q-learning (context-specific
SparseQ), an extension of SparseQ, which approximates the global Q-function using
the structure of a given context-specific CG [Guestrin et al., 2002c]. Such a graph
specifies the coordination dependencies of the system for a specific context using value
rules. Each rule consists of an arbitrary subset of state and action variables, and a
value which is added to the system when the state and action variables apply to the
current situation. Again, we investigated both an agent-based and edge-based decom-
position of the global action value. In both cases, the value of each rule contributes
additively to the global action value, and is updated based on a Q-learning update
rule that adds the local contribution of all involved agents in the rule. Effectively,
each agent learns to coordinate only with its neighbors in a dynamically changing
coordination graph. Another contribution from this chapter is our utile coordina-
tion algorithm, a method which starts with independent, non-coordinating, agents
and learns the structure of a context-specific CG automatically based on statistics on
expected returns for hypothesized coordinated states. Using the value-rule representa-
tion, a coordinated dependency can easily be constructed by adding value rules which
incorporate the actions of the other agent. Results in the pursuit domain showed that
context-specific SparseQ improved the learning time with respect to other multiagent

7.2. FUTURE WORK 133

Q-learning methods, and performed close to optimal when manually defining the co-
ordination dependencies of the system. We also showed that our utile coordination
approach resulted in a similar policy based on a learned set of rules that is smaller
than our manually specified set.

In Chapter 6, we applied context-specific CGs to coordinate the agents in dy-
namic and continuous domains. The continuous nature of the state-action space
complicates the direct application of context-specific CGs. Our approach is to assign
roles to the agents in order to convert the continuous state to a discrete context,
allowing the application of existing techniques for discrete-state CGs. This simplifies
the coordination structure and constrains the action space of the agents considerably.
Furthermore, it allows for the definition of natural coordination rules that exploit
prior knowledge about the domain. Finally, we showed that we can dispense with
communication if additional assumptions about common knowledge are introduced.
This makes it possible to model the reasoning process of the other agents, making
communication unnecessary. Applying the resulting coordination framework to our
UvA Trilearn robotic soccer simulation team resulted in improved coordinated be-
havior of the agents and in three RoboCup tournament wins in 2003, including the
RoboCup-2003 World Championships in Padova, Italy.

7.2 Future work

In this section we discuss several interesting directions for future research. We both
present alternative approaches and extensions to our presented methods.

We applied the max-plus algorithm, analogous to the belief propagation algorithm
in Bayesian networks, to coordinate the actions of the agents in a cooperative mul-
tiagent system. However, extensions of the belief propagation algorithm for graphs
with cycles exist that often have convergence properties superior to those of parallel
message-passing updates [Wainwright et al., 2004]. For example, Wainwright et al.
[2003] present a tree-based reparameterization framework that combines the exact
solutions of different cycle-free subgraphs. Furthermore, several other approximation
alternatives exist in the Bayesian network literature that could also be applied. One
natural alternative is to apply the ‘mini-bucket’ approach, an approximation in which
the VE algorithm is simplified by changing the full maximization for each elimina-
tion of an agent to the summation of simpler local maximizations [Dechter and Rish,
1997]. Another possible direction is to model the dependencies between the agents
using a factor graph representation [Kschischang et al., 2001], which allows more prior
knowledge about the problem to be introduced beforehand. It would be interesting
to apply these different approaches to the problem of coordinating the actions of the
agents, and compare the results.

Another possible extension to the max-plus algorithm is to investigate a variant
that takes advantage of the value-rule representation of a context-specific CG. Cur-
rently, the max-plus algorithm always sends messages that specify the value for each
possible action of the receiving agent. The rule-based VE method on the other hand

134 CHAPTER 7. CONCLUSIONS

communicates conditional strategies, represented as value rules, which only contain
the values for non-zero and dominating actions (based on all possible action com-
binations of its neighbors). When each agent can perform many actions, it might
be worthwhile to investigate a combination of the two methods, and communicate
messages, which are based on the action of the receiving agent, using a value-rule rep-
resentation in the max-plus algorithm. Using such an approach, it might be possible
to coordinate larger groups of agents and add more specialized fine-grained coordi-
nation. However, due to the complexity involved with the management of the rules,
the smaller number of rules will only outweigh the computational advantages of the
table-based messages in problems with a large amount of context-specific structure.

We investigated several decompositions of the action value based on the topology
of a CG in our different SparseQ methods. The topology can be chosen arbitrar-
ily, but should resemble the dependencies of the problem under study in order to
produce relevant results. Given a CG structure, a choice has to be made whether
to use an agent-based or edge-based decomposition. The agent-based decomposition
gives better performance, but its space and computational complexity scale exponen-
tially with the number of dependencies, resulting in exploration difficulties for large
problems with many dependencies. In this case, an edge-based decomposition can be
used which only stores action values based on pairwise dependencies. For this de-
composition, we investigated both an edge-based and agent-based method to update
the Q-values after an experienced state transition, but our experimental results only
show minor differences between these two update methods. An interesting avenue for
future work is to consider the consequences of all these different choices, and identify
the most appropriate method for a given problem definition.

Another interesting issue is related to the Q-updates of the edge-based decomposi-
tion. In each update, we now divide the reward proportionally over its edges (see (4.8)
and (4.11)), and thus assume that all agents contribute equally to the dependencies
in which they are involved. However, other schemes are also be possible, for example,
dividing the reward based on the current value of the Q-values or on distributions of
previous received rewards.

With respect to the context-specific SparseQ methods, it would be interesting to
investigate the robustness of these methods when new agents are added or existing
agents are removed from the system. Since all Q-functions and updates are defined
locally, it is possible to compensate for the addition or removal of an agent by re-
defining the value rules in which this agent is involved. The algorithm to compute
the best joint action and the local updates do not have to be changed as long as the
neighboring agents are aware of the new topology of the CG.

In our utile coordination approach, we focused on the problem of extending the ac-
tion space. Another interesting direction is to investigate the possibility of decreasing
the action space by removing dependencies which are unnecessary according to the
gathered statistics. In this case, we also have to store statistics for coordinated states
based on hypothesized uncoordinated states and test whether the expected return is
not significantly lower when the actions are not explicitly coordinated. Furthermore,
the coordination dependencies between the agents were learned based on the full state

7.2. FUTURE WORK 135

information. For large state spaces, this might not always be possible. An interesting
approach is a variation of the utile coordination algorithm in which also the state
variables that are important for coordination are learned. This combines well with
the structure of a coordination graph, because also state variables can be added and
removed from the value rules. An individual agent then starts with rules that only
represent its own individual view of the environmental state, and over time learns
how to extend the state representation for the situations which require coordination.
This approach is similar to the work of McCallum [1997] in which a partitioning of
the state space is constructed for partially observable Markov decision processes.

Apart from the aforementioned extensions to our methods, there are also other
directions for future research. One is to consider partially observable models which as-
sume the agents only have limited information about the environment [Lovejoy, 1991;
Kaelbling et al., 1998]. However, this complicates the problem significantly because
the agents have to find a mapping from a observation histories to actions, instead
of discrete states to actions. Even for single-agent problems that have access to the
model description exact solution methods are only applicable to the smallest prob-
lems [Sondik, 1971; Cheng, 1988]. Approximate solution techniques exist [Hauskrecht,
2000; Spaan and Vlassis, 2005] but are difficult to extend to multiple agents.

Finally, an interesting research direction is to apply our SparseQ methods to learn
the behaviors of the agents in continuous domains. Although different function-
approximation techniques exist for continuous state representations [Albus, 1971;
Sutton and Barto, 1998], large action sets have been explored only to a limited extent
[Santamaria et al., 1998; Sherstov and Stone, 2005]. One of the major problems is to
generalize over the action space because it is more difficult to construct an appropriate
distance measure for discrete joint actions than for continuous state variables. Fur-
thermore, a large action space requires many exploration actions which slows down
learning. Our approach is able to decompose the action space into a set of smaller
problems which decreases the number of samples required for learning the policies of
the agents because updates are essentially performed in parallel. However, learning a
coordinated policy for systems with many (discretized) states, or systems with many
dependencies might still require a large number of samples.

Summary

Many large-scale applications are formulated in terms of spatially or functionally
distributed entities, also called agents. Examples include robotic teams, but also
distributed software applications. In such systems, the agents autonomously have
to take rational actions, based on incoming information from their environment, in
order to accomplish a certain goal. Collaboration enables the agents to work more
efficiently and to complete activities they are not able to accomplish individually.
However, in order to collaborate the agents should (learn to) coordinate their actions.
This is a complicated process because the total number of action combinations grows
exponentially with the increase of the number of agents. Furthermore, the outcome
of the individual decision of an agent can be influenced by the actions performed by
the other agents.

This thesis presented several techniques to coordinate and learn the behavior of
the agents in distributed cooperative multiagent systems. It both studied the problem
of coordinating the behavior of multiple agents in a specific situation, and learning,
based on experience, the behavior of a group of agents in sequential decision-making
problems. The latter are problems in which the agents repeatedly interact with their
environment and have to perform a sequence of actions in order to reach a certain
goal. Our main approach in all presented methods is to simplify the coordination
problem by exploiting the actual dependencies that exist between the agents using a
coordination graph (CG). Simply stated, this decomposes the global problem into a
combination of simpler problems.

In Chapter 3, we addressed the problem of coordinating the actions of a large group
of agents in a specific situation for which the coordination dependencies were given.
We presented the max-plus algorithm that operates by exchanging locally optimized
messages over the edges of the CG. By performing a local computation based on its
incoming messages, each agent is able to select an individual action that is coordinated
with the action choices of the other agents. For large, highly connected graphs we
empirically demonstrated that max-plus can find good solutions exponentially faster
than the variable elimination algorithm, an existing exact method.

In Chapter 4, we investigated the problem of learning the coordinated behavior of
the agents in sequential decision-making problems. We presented a family of model-
free reinforcement-learning variants, called sparse cooperative Q-learning (SparseQ).
These methods approximate the global Q-function, representing the expected outcome
for a specific action in a certain situation, using the structure of a given CG. We

138 Summary

analyzed both a decomposition in terms of the nodes, as well as one in terms of the
edges of the graph. During learning, each local Q-function is updated based on its
local contribution to the maximal global action value found with either the variable
elimination or the max-plus algorithm.

In Chapter 5, we studied solution methods for multiagent sequential decision-
making problems that are able to take advantage of changing coordination struc-
tures. We presented context-specific sparse cooperative Q-learning (context-specific
SparseQ), an extension of SparseQ, which approximates the global Q-function using
the structure of a given context-specific CG. A context-specific CG specifies the co-
ordination requirements of the system for a specific context using value rules. Each
rule consists of an arbitrary subset of state and action variables, and a value which
is contributed to the system when the state and action variables apply to the cur-
rent situation. Furthermore, we presented our utile coordination algorithm, a method
which starts with independent, non-coordinating, agents and learns the structure of
a context-specific CG automatically based on statistics on expected returns for hy-
pothesized coordinated states.

In Chapter 6, we applied context-specific CGs to coordinate the agents in dynamic
and continuous domains. Our approach is to assign roles to the agents in order to
convert the continuous state to a discrete context, allowing the application of exist-
ing techniques for discrete-state CGs. This simplifies the coordination structure and
constrains the action space of the agents considerably. Furthermore, it allows for
the definition of natural coordination rules that exploit prior knowledge about the
domain. Finally, we showed that we can dispense with communication if additional
assumptions about common knowledge are introduced. Applying the resulting coor-
dination framework to our UvA Trilearn robotic soccer simulation team resulted in
improved coordinated behavior of the agents and in three RoboCup tournament wins
in 2003, including the RoboCup-2003 World Championships in Padova, Italy.

Samenvatting1

Veel grootschalige applicaties worden gedefinieerd als een combinatie van kleinere
componenten en hun interactie. Deze componenten worden agenten genoemd en zijn
vaak ruimtelijk of functioneel gedistribueerd. Mogelijke voorbeelden zijn een team van
robots en gedistribueerde softwareapplicaties. In zulke systemen voeren de agenten
zelfstandig rationele acties uit aan de hand van de waargenomen omgeving om een
bepaald doel te bereiken. Samenwerking tussen de agenten maakt het mogelijk om
hun activiteiten efficiënter uit te voeren en taken te volbrengen die zij individueel niet
kunnen verwezenlijken. Hiervoor moeten de agenten echter wel (leren) om hun acties
op elkaar af te stemmen. Dit is een gecompliceerd probleem aangezien het totaal
aantal actiecombinaties exponentieel groeit met het aantal agenten, en elke agent
besluiten neemt die bëınvloed kunnen worden door de acties van de andere agenten.

In dit proefschrift zijn we gëınteresseerd in het ontwikkelen van technieken om
het gedrag van de agenten op elkaar af te stemmen. We beschouwen zowel het
coördinatieprobleem in één specifieke situatie als in ‘sequentiële beslissingsprocessen’.
De laatste zijn processen waarin de agenten herhaaldelijk hun omgeving bëınvloeden
en een serie van acties moeten uitvoeren om hun doel te bereiken. Onze hoofdaanpak
in alle voorgestelde methodes is om het coördinatieprobleem te vereenvoudigen door
alleen te kijken naar de daadwerkelijke afhankelijkheden tussen de agenten. Dit kan
weergegeven worden met een coördinatiegraaf waarin alleen de agenten die hun acties
op elkaar moeten afstemmen verbonden zijn. Simpel gesteld wordt zo het globale
probleem opgedeeld in een combinatie van eenvoudigere problemen.

In hoofdstuk 3 behandelden wij het probleem om de acties van een groep agenten in
een specifieke situatie te coördineren wanneer de cor̈dinatieafhankelijkheden tussen de
agenten bekend zijn. Wij introduceerden het ‘max-plus’ algoritme waarin de agenten
lokale optimalisaties uitvoeren en het resultaat naar hun buren in de coördinatiegraaf
sturen. Elke agent bepaalt zijn gecoördineerde individuele actie door een lokale bere-
kening uit te voeren op basis van de binnenkomende berichten. Wij hebben empirisch
aangetoond dat voor grote, dichte grafen deze aanpak goede resultaten oplevert en
exponentieel sneller is dan een bestaande optimale methode.

In hoofdstuk 4 onderzochten wij het probleem om het gedrag van de agenten in een
sequentieel beslissingsproces te leren. Wij introduceerden een familie van leertechnie-
ken waarin de agenten aan de hand van hun interactie met de omgeving automatisch

1Summary in Dutch.

140 Samenvatting

hun gedrag leren. Onze techniek, sparse cooperative Q-learning (SparseQ) genoemd,
benadert de global Q-functie, die het verwachte resultaat van een actiekeuze in een
bepaalde toestand teruggeeft, met behulp van de structuur van een coördinatiegraaf.
Wij analyseerden zowel een opdeling gebaseerd op de knopen, als de zijden van de
graaf. Tijdens het leren wordt elke lokale Q-functie bijgewerkt aan de hand van zijn
lokale bijdrage aan de maximale globale waarde, die gevonden kan worden met een
bestaande optimale methode of ons max-plus algoritme.

In hoofdstuk 5 bestudeerden wij oplossingsmethodes voor sequentiële beslissings-
processen waarin de agenten hun gedrag leren in het geval dat de afhankelijkheden
tussen de agenten per situatie kunnen verschillen. Wij introduceerden context-specific
sparse cooperative Q-learning, een uitbreiding van SparseQ die de globale Q-functie
benadert met behulp van de structuur van een contextafhankelijke coördinatiegraaf.
Deze specificeert de coördinatieafhankelijkheden voor een specifieke situatie met be-
hulp van ‘value’ regels. Elke regel bestaat uit een willekeurige set van toestand- en
actievariabelen, en een waarde die aan het systeem wordt bijgedragen wanneer de
waardes van deze variabelen overeenkomen met de huidige situatie. Verder introdu-
ceerden wij ons utile coordination algoritme, een methode die met onafhankelijke ope-
rerende agenten begint en de structuur van een contextafhankelijke coördinatiegraaf
automatisch leert aan de hand van verzamelde statistieken tijdens het leerproces.

In hoofdstuk 6 pasten wij contextafhankelijke coördinatiegrafen toe om de acties
van de agenten in dynamische en continue domeinen te coördineren. Wij kenden elke
agent een rol toe om zo de continue toestand om te zetten in een discrete toestand, zo-
dat bestaande technieken van contextafhankelijke coördinatiegrafen toegepast kunnen
worden. Deze aanpak vereenvoudigt de coördinatiestructuur en beperkt de actieruim-
te van de agenten aanzienlijk, en stelt ons in staat om natuurlijke coördinatieregels te
definiëren die gebruik maken van bestaande domeinkennis. Tevens toonden wij aan
dat er geen communicatie nodig is wanneer er extra aannames over gemeenschappe-
lijke kennis gemaakt worden. Het toepassen van deze aanpak op ons robotvoetbal
simulatieteam UvA Trilearn resulteerde in betere coördinatie van de agenten en in de
winst van drie RoboCup toernooien, waaronder het RoboCup-2003 wereldkampioen-
schap in Padova, Italië, in 2003.

Bibliography

Albus, J. (1971). A theory of cerebellar function. Mathematical Biosciences, 10:25–61.
Page(s): 115, 135

Ali, S. M., Koenig, S., and Tambe, M. (2005). Preprocessing techniques for accelerat-
ing the DCOP algorithm ADOPT. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pages 1041–1048.
Utrecht, The Netherlands. Page(s): 72

Arai, T., Pagello, E., and Parker, L. E. (2002). Editorial: Advances in multi-robot sys-
tems. IEEE Transactions on Robotics and Automation, 18(5):665–661. Page(s): 55

Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity of finding
embedding in a k-tree. SIAM Journal of Algebraic Discrete Methods, 8:277–284.
Page(s): 40

Bagnell, J. A. and Ng, A. Y. (2006). On local rewards and the scalability of distributed
reinforcement learning. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances
in Neural Information Processing Systems (NIPS) 18. MIT Press, Cambridge, MA.
Page(s): 24, 56

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-time
dynamic programming. Artificial Intelligence, 72:81–138. Page(s): 19

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2003). Transition-
independent decentralized Markov decision processes. In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Melbourne, Australia. Page(s): 6, 28, 55, 64

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2004). Solving transi-
tion independent decentralized Markov decision processes. In Journal of Artificial
Intelligence Research, volume 22, pages 423–455. Page(s): 28

Bellman, R. (1957). Dynamic programming. Princeton University Press. Page(s): 17

Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On optimal cooperation of
knowledge sources - an experimental investigation. Technical Report BCS-G2010-
280, Boeing Advanced Technology Center, Boeing Computing Services, Seattle,
Washington. Page(s): 80, 91

142 BIBLIOGRAPHY

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The complexity
of decentralized control of Markov decision processes. Mathematics of Operations
Research, 27(4):819–840. Page(s): 6, 24, 28

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity of de-
centralized control of Markov decision processes. In Proceedings of Uncertainty in
Artificial Intelligence (UAI). Stanford, CA. Page(s): 28, 56

Bertelé, U. and Brioschi, F. (1972). Nonserial dynamic programming. Academic
Press. Page(s): 40

Bertsekas, D. P. (2000). Dynamic programming and optimal control. Athena Scien-
tific, 2nd edition. Page(s): 16

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and distributed computation:
Numerical methods. Prentice-Hall. Page(s): 18

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena
Scientific. Page(s): 5, 9, 17, 18, 56, 57

de Boer, R. and Kok, J. R. (2002). The incremental development of a synthetic multi-
agent system: the UvA Trilearn 2001 robotic soccer simulation team. Master’s
thesis, University of Amsterdam, The Netherlands. Page(s): 106, 108, 111, 112,
119, 120, 123, 128

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision pro-
cesses. In Proceedings of the Conference on Theoretical Aspects of Rationality and
Knowledge. Page(s): 3, 6, 21, 24, 26, 29, 30, 56

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Research,
11:1–94. Page(s): 5, 14, 16

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic pro-
gramming with factored representations. Artificial Intelligence, 121(1-2):49–107.
Page(s): 81

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning
rate. Artificial Intelligence, 136(8):215–250. Page(s): 30

Boyan, J. A. and Littman, M. L. (1994). Packet routing in dynamically changing net-
works: A reinforcement learning approach. In Cowan, J. D., Tesauro, G., and Al-
spector, J., editors, Advances in Neural Information Processing Systems (NIPS) 6,
pages 671–678. Morgan Kaufmann Publishers, Inc. Page(s): 3, 55

Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., and Sgorbissa, A.
(2000). Coordination among heterogenous robotic soccer players. In Proceedings
of the International Conference on Intelligent Robots and Systems (IROS). Taka-
matsu, Japan. Page(s): 115

Chaib-draa, B. and Müller, J. P. (2006). Multiagent-based supply chain management.
Springer. Page(s): 3

BIBLIOGRAPHY 143

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in multiagent reinforcement
learning: A Bayesian approach. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pages 709–716.
ACM Press, Melbourne, Australia. Page(s): 57

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforce-
ment learning: An algorithm and performance comparisons. In Mylopoulos, J.
and Reiter., R., editors, Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 726–731. Morgan Kaufmann, San Mateo, Ca.
Page(s): 80, 97

Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis,
K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y.,
and Yin, X. (2003). RoboCup soccer server users manual for soccer server version
7.07 and later. At http://sserver.sourceforge.net/. Page(s): 6, 105, 108

Cheng, H. T. (1988). Algorithms for partially observable Markov decision processes.
Ph.D. thesis, University of British Columbia. Page(s): 135

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coop-
erative multiagent systems. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). Madison, WI. Page(s): 21, 31

Clement, B. J. and Barrett, A. C. (2003). Continual Coordination through Shared
Activities. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS). ACM Press, Melbourne, Australia.
Page(s): 3

Collins, M. and Aldrin, E. E., Jr. (1975). Apollo expeditions to the moon. NASA SP.
Page(s): 106

Crick, C. and Pfeffer, A. (2003). Loopy belief propagation as a basis for communi-
cation in sensor networks. In Proceedings of Uncertainty in Artificial Intelligence
(UAI). Page(s): 43

Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcement
learning. In Advances in Neural Information Processing Systems (NIPS) 8, pages
1017–1023. MIT Press. Page(s): 56

Dean, T. and Boddy, M. (1988). An analysis of time-dependent planning. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI). Morgan Kauf-
mann. Page(s): 44

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and
causation. Journal of Computational Intelligence, 5(3):142–150. Page(s): 14, 25

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann. Page(s): 36

Dechter, R. and Rish, I. (1997). A scheme for approximating probabilistic infer-
ence. In Proceedings of Uncertainty in Artificial Intelligence (UAI), pages 132–141.
Page(s): 133

http://sserver.sourceforge.net/

144 BIBLIOGRAPHY

Durfee, E. H. (2001). Distributed problem solving and planning. Springer-Verlag,
New York, NY, USA. ISBN 3-540-42312-5. Page(s): 2

Dutta, P. S., Jennings, N. R., and Moreau, L. (2005). Cooperative information shar-
ing to improve distributed learning in multi-agent systems. Journal of Artificial
Intelligence Research, 24:407–463. Page(s): 3, 55

Dynkin, E. B. (1965). Controlled random sequences. Theory of probability and its
applications, 10(1):1–14. Page(s): 16

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning about
knowledge. The MIT Press, Cambridge, MA. Page(s): 118

Frank, I., Anaka-Ishii, K., Arai, K., and Matsubara, H. (2001). The statistics proxy
server. In Stone, P., Balch, T., and Kraetszchmar, G., editors, RoboCup-2000:
Robot Soccer World Cup IV, pages 303–308. Springer Verlag, Berlin. Page(s): 125

Goldman, C. and Zilberstein, S. (2004). Decentralized control of cooperative systems:
Categorization and complexity analysis. Journal of Artificial Intelligence Research,
22:143–174. Page(s): 6, 28, 56

Goldman, C. V. and Zilberstein, S. (2003). Optimizing information exchange in coop-
erative multi-agent systems. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 137–144. ACM
Press, New York, NY, USA. Page(s): 56

Guestrin, C. (2003). Planning under uncertainty in complex structured environments.
Ph.D. thesis, Computer Science Department, Stanford University. Page(s): 6, 25,
26, 82, 132

Guestrin, C., Koller, D., and Parr, R. (2002a). Multiagent planning with factored
MDPs. In Advances in Neural Information Processing Systems (NIPS) 14. The
MIT Press. Page(s): 4, 35, 36, 37, 131

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution
algorithms for factored MDPs. Journal of Artificial Intelligence Research, 19:399–
468. Page(s): 14, 15, 16

Guestrin, C., Lagoudakis, M., and Parr, R. (2002b). Coordinated reinforcement learn-
ing. In International Conference on Machine Learning (ICML). Sydney, Australia.
Page(s): 57, 58, 64

Guestrin, C., Venkataraman, S., and Koller, D. (2002c). Context-specific multiagent
coordination and planning with factored MDPs. In Proceedings of the National
Conference on Artificial Intelligence (AAAI). Edmonton, Canada. Page(s): 79, 80,
81, 83, 118, 129, 132

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for
partially observable stochastic games. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). San Jose, CA. Page(s): 28

BIBLIOGRAPHY 145

Hauskrecht, M. (2000). Value function approximations for partially observable
Markov decision processes. Journal of Artificial Intelligence Research, 13:33–95.
Page(s): 135

Howard, R. A. (1960). Dynamic programming and Markov processes. MIT Press and
John Wiley & Sons, Inc. Page(s): 17, 18

Iocchi, L., Nardi, D., Piaggio, M., and Sgorbissa, A. (2003). Distributed coordina-
tion in heterogeneous multi-robot systems. Autonomous Robots, 15(2):155–168.
Page(s): 115, 129

Jakab, P. L. (1990). Visions of a flying machine: The Wright brothers and the process
of invention. Smithsonian Institution Press, Washington D. C. Page(s): 106

Jensen, F. V. (2001). Bayesian networks and decision graphs. Springer-Verlag.
Page(s): 14

Jesse Hoey, A. H., Robert St. Aubin and Boutilier, C. (1999). SPUDD: stochas-
tic planning using decision diagrams. In Proceedings of Uncertainty in Artificial
Intelligence (UAI). Stockholm, Sweden. Page(s): 15

Jordan, M. (1998). Learning in graphical models. Kluwer Academic Publishers,
Dordrecht, The Netherlands. Page(s): 40

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence, 101:99–134.
Page(s): 16, 135

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285. Page(s): 12

Kitano, H. and Asada, M. (1998). RoboCup humanoid challenge: That’s one small
step for a robot, one giant leap for mankind. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). Page(s): 106

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1995). RoboCup:
The robot world cup initiative. In Proceedings of the IJCAI-95 Workshop on En-
tertainment and AI/Alife. Page(s): 55

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1997). RoboCup:
The robot world cup initiative. In Proceedings of the International Conference on
Autonomous Agents. Page(s): 106, 107

Kok, J. R., de Boer, R., and Vlassis, N. (2002). Towards an optimal scoring policy for
simulated soccer agents. In Gini, M., Shen, W., Torras, C., and Yuasa, H., editors,
Proceedings of the International Conference on Intelligent Autonomous Systems,
pages 195–198. IOS Press, Marina del Rey, California. Page(s): 120

Kok, J. R., ’t Hoen, P. J., Bakker, B., and Vlassis, N. (2005a). Utile coordination:
learning interdependencies among cooperative agents. In Proceedings of the IEEE
Symposium on Computational Intelligence and Games (CIG), pages 29–36. Colch-
ester, United Kingdom. Page(s): 79, 97

146 BIBLIOGRAPHY

Kok, J. R., Spaan, M. T. J., and Vlassis, N. (2003). Multi-robot decision making using
coordination graphs. In de Almeida, A. T. and Nunes, U., editors, Proceedings
of the International Conference on Advanced Robotics (ICAR), pages 1124–1129.
Coimbra, Portugal. Page(s): 105, 114

Kok, J. R., Spaan, M. T. J., and Vlassis, N. (2005b). Non-communicative multi-
robot coordination in dynamic environments. Robotics and Autonomous Systems,
50(2-3):99–114. Page(s): 55, 105, 114

Kok, J. R. and Vlassis, N. (2003). The pursuit domain package. Technical Report
IAS-UVA-03-03, Informatics Institute, University of Amsterdam, The Netherlands.
Page(s): 80, 91

Kok, J. R. and Vlassis, N. (2004a). Sparse cooperative Q-learning. In Greiner, R. and
Schuurmans, D., editors, Proceedings of the International Conference on Machine
Learning, pages 481–488. ACM, Banff, Canada. Page(s): 79, 86

Kok, J. R. and Vlassis, N. (2004b). Sparse tabular multiagent Q-learning. In
Ann Nowé, K. S., Tom Lenaerts, editor, Proceedings of the Annual Machine Learn-
ing Conference of Belgium and the Netherlands, pages 65–71. Brussels, Belgium.
Page(s): 79, 84

Kok, J. R. and Vlassis, N. (2005). Using the max-plus algorithm for multiagent
decision making in coordination graphs. In RoboCup-2005: Robot Soccer World
Cup IX. Osaka, Japan. Best Scientific Paper Award. To appear. Page(s): 35, 36,
40

Kok, J. R. and Vlassis, N. (2006). Collaborative Multiagent Reinforcement Learn-
ing by Payoff Propagation. Journal of Machine Learning Research. To appear.
Page(s): 35, 40, 55

Koller, D. (2004). Multi-agent planning in complex uncertain environments. In AA-
MAS’04 Abstract invited talk. Page(s): 105

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory, 47:498–519.
Page(s): 41, 133

Lesser, V., Ortiz, C., and Tambe, M. (2003). Distributed sensor nets: A multiagent
perspective. Kluwer academic publishers. Page(s): 3, 55

Lesser, V. R. (1999). Cooperative multiagent systems: a personal view of the state
of the art. Knowledge and data engineering, 11(1):133–142. Page(s): 35

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML). San Francisco,
CA. Page(s): 10

Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Processing
Magazine, pages 28–41. Page(s): 37, 48

BIBLIOGRAPHY 147

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed Markov
decision processes. Annals of Operations Research, 28:47–66. Page(s): 16, 135

Marc, F., Fallah-Seghrouchni, A. E., and Degirmenciyan-Cartault, I. (2004). Co-
ordination of complex systems based on multi-agent planning: application to the
aircraft simulation domain. In AAMAS’04 Workshop on Programming Multi-Agent
Systems, pages 224–248. Page(s): 3

McCallum, R. A. (1997). Reinforcement learning with selective perception and hid-
den state. Ph.D. thesis, University of Rochester, Computer Science Department.
Page(s): 80, 97, 135

Moallemi, C. C. and Van Roy, B. (2004). Distributed optimization in adaptive net-
works. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural In-
formation Processing Systems (NIPS) 16. MIT Press, Cambridge, MA. Page(s): 57

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence,
161(1-2):149–180. Page(s): 3, 55

Mooij, J. M. and Kappen, H. J. (2005). Sufficient conditions for convergence of loopy
belief propagation. In Proceedings of Uncertainty in Artificial Intelligence (UAI),
pages 396–403. Page(s): 43

Murphy, K., Weiss, Y., and Jordan, M. (1999). Loopy belief propagation for approx-
imate inference: An empirical study. In Proceedings of Uncertainty in Artificial
Intelligence (UAI). Stockholm, Sweden. Page(s): 43

Nash, J. F. (1950). Equilibrium points in n-person games. In Proceedings of the
National Academy of Science, pages 48–49. Page(s): 29

Ng, A. Y., Kim, H. J., Jordan, M., and Sastry, S. (2004). Autonomous helicopter
flight via reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS) 16. Page(s): 56

Noda, I., Matsubara, H., Hiraki, K., and Frank, I. (1998). Soccer server: a tool
for research on multi-agent systems. Applied Artificial Intelligence, 12:233–250.
Page(s): 105, 108

Osborne, M. J. and Rubinstein, A. (1994). A course in game theory. MIT Press.
Page(s): 22, 27, 29, 30

Parker, L. E. (2002). Distributed algorithms for multi-robot observation of multiple
moving targets. Autonomous Robots, 12(3):231–255. Page(s): 55

Patterson, D. A. and Hennessy, J. L. (1994). Computer organization and design: The
hardware/software interface. European adaptation. Morgan Kaufmann Publishers,
San Francisco, CA. Page(s): 106

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufman,
San Mateo. Page(s): 36, 40, 41, 42

148 BIBLIOGRAPHY

Peshkin, L., Kim, K.-E., Meuleau, N., and Kaelbling, L. P. (2000). Learning to
cooperate via policy search. In Proceedings of Uncertainty in Artificial Intelligence
(UAI), pages 489–496. Morgan Kaufmann Publishers. Page(s): 28, 57

Poole, D., Mackworth, A., and Goebel, R. (1998). Computational Intelligence: a
logical approach. Oxford University Press, New York. Page(s): 1

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic
programming. Wiley, New York. Page(s): 5, 9, 12, 16, 17, 18

Pynadath, D. V. and Tambe, M. (2002). The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, 16:389–423. Page(s): 6, 22, 23, 24, 28, 56

Reis, L. P., Lau, N., and Oliveira, E. C. (2001). Situation based strategic positioning
for coordinating a team of homogeneous agents. Lecture Notes in Computer Science,
2103:175–197. Page(s): 123

Rich, E. and Knight, K. (1991). Artificial Intelligence. McGraw-Hill, New York, 2nd
edition. Page(s): 1

Riedmiller, M. and Merke, A. (2002). Using machine learning techniques in complex
multi-agent domains. Perspectives on adaptivity and learning. Page(s): 108

Riley, P. and Veloso, M. (2000). On behavior classification in adversarial environ-
ments. In Parker, L. E., Bekey, G., and Barhen, J., editors, Distributed Autonomous
Robotic Systems 4, pages 371–380. Springer-Verlag. Page(s): 108

Russell, S. J. and Norvig, P. (2003). Artificial intelligence: A modern approach.
Prentice Hall, 2nd edition. Page(s): 1, 5, 9

Santamaria, J., Sutton, R., and Ram, A. (1998). Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive Behavior,
6(2). Page(s): 135

Schaeffer, J. and Plaat, A. (1997). Kasparov versus Deep Blue: The re-match. Journal
of the International Computer Chess Association, 20(2):95–101. Page(s): 106

Schneider, J., Wong, W.-K., Moore, A., and Riedmiller, M. (1999). Distributed
value functions. In International Conference on Machine Learning (ICML). Bled,
Slovenia. Page(s): 32

Schuurmans, D. and Patrascu, R. (2002). Direct value-approximation for fac-
tored MDPs. In Advances in Neural Information Processing Systems (NIPS) 14.
Page(s): 15

Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge, UK. Page(s): 23

Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing
information. In Proceedings of the National Conference on Artificial Intelligence
(AAAI). Seattle, WA. Page(s): 32

BIBLIOGRAPHY 149

Shapley, L. (1953). Stochastic games. Proceedings of the National Academy of Sci-
ences, 39:1095–1100. Page(s): 10, 27

Sherstov, A. A. and Stone, P. (2005). Improving action selection in MDP’s via knowl-
edge transfer. In Proceedings of the National Conference on Artificial Intelligence
(AAAI). Pittsburgh, USA. Page(s): 135

Smith, R. (2006). Open dynamics engine v0.5 user guide. Page(s): 108

Sondik, E. J. (1971). The optimal control of partially observable Markov decision
processes. Ph.D. thesis, Stanford University. Page(s): 135

Spaan, M. T. J. and Vlassis, N. (2005). Perseus: Randomized point-based value
iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220.
Page(s): 135

Spaan, M. T. J., Vlassis, N., and Groen, F. C. A. (2002). High level coordination
of agents based on multiagent Markov decision processes with roles. In Saffiotti,
A., editor, IROS’02 Workshop on Cooperative Robotics, pages 66–73. Lausanne,
Switzerland. Page(s): 115, 129

Stevens, J. P. (1990). Intermediate statistics: A modern approach. Lawrence Erlbaum.
Page(s): 98

Stone, P. (1998). Layered learning in multi-agent systems. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA. Page(s): 2, 108,
110

Stone, P. and McAllester, D. (2001). An architecture for action selection in robotic
soccer. In Proceedings of the International Conference on Autonomous Agents,
pages 316–323. ACM Press. Page(s): 119, 128

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005). Reinforcement learning for
RoboCup-soccer keepaway. Adaptive Behavior, 13(3):165–188. Page(s): 57

Stone, P. and Veloso, M. (1999). Task decomposition, dynamic role assignment and
low-bandwidth communication for real-time strategic teamwork. Artificial Intelli-
gence, 110(2):241–273. Page(s): 115, 129

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3). Page(s): 2, 91

Sutton, R. S. and Barto, A. G. (1990). Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic programming. In International
Conference on Machine Learning (ICML), pages 216–224. Page(s): 19

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction.
MIT Press, Cambridge, MA. Page(s): 5, 9, 12, 17, 18, 56, 115, 135

Sycara, K. (1998). Multiagent systems. AI Magazine, 19(2):79–92. Page(s): 2, 19, 35

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124. Page(s): 108, 115

150 BIBLIOGRAPHY

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative
agents. In International Conference on Machine Learning (ICML). Amherst, MA.
Page(s): 32, 55, 64, 91, 92

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3). Page(s): 56

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Ma-
chine Learning, 16(3):185–202. Page(s): 19

Visser, A., Lagerberg, J., van Inge, A., Hertzberger, L. O., van Dam, J., Dev, A.,
Dorst, L., Groen, F. C. A., Kröse, B. J. A., and Wiering, M. (1999). The organi-
zation and design of autonomous systems. University of Amsterdam. Page(s): 111

Vlassis, N. (2003). A concise introduction to multiagent systems and distributed AI.
Informatics Institute, University of Amsterdam. Page(s): 2, 19, 21, 30, 31, 35, 115,
129

Vlassis, N., Elhorst, R., and Kok, J. R. (2004). Anytime algorithms for multiagent
decision making using coordination graphs. In Proceedings of the International
Conference on Systems, Man, and Cybernetics (SMC). The Hague, The Nether-
lands. Page(s): 40

Vlassis, N., Terwijn, B., and Kröse, B. (2002). Auxiliary particle filter robot local-
ization from high-dimensional sensor observations. In Proceedings of the IEEE
International Conference on Robotics and Automation. Washington D.C., USA.
Page(s): 112

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2002). Tree consistency and
bounds on the performance of the max-product algorithm and its generalizations.
Technical report, P-2554, LIDS-MIT. Page(s): 42

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2003). Tree-based reparam-
eterization framework for analysis of sum-product and related algorithm. IEEE
Transactions on Information Theory, 49(5):1120–1146. Page(s): 133

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2004). Tree consistency and
bounds on the performance of the max-product algorithm and its generalizations.
Statistics and Computing, 14:143–166. Page(s): 41, 42, 43, 133

Wang, X. and Sandholm, T. (2003). Reinforcement learning to play an optimal Nash
equilibrium in team Markov games. In Advances in Neural Information Processing
Systems (NIPS) 15. MIT Press, Cambridge, MA. Page(s): 30

Watkins, C. and Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8(3-4):279–292. Page(s): 19

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, Cambridge
University. Page(s): 18

Weiss, G., editor (1999). Multiagent systems: A modern approach to distributed
artificial intelligence. MIT Press. Page(s): 2, 19

BIBLIOGRAPHY 151

Withopf, D. and Riedmiller, M. (2005). Effective methods for reinforcement learning
in large multi-agent domains. it - Information Technology, 47(5). Page(s): 108

Wolpert, D., Wheeler, K., and Tumer, K. (1999). General principles of learning-
based multi-agent systems. In Proceedings of the International Conference on Au-
tonomous Agents, pages 77–83. Page(s): 32

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003). Understanding belief propa-
gation and its generalizations. In Exploring Artificial Intelligence in the New Mil-
lennium, chapter 8, pages 239–269. Morgan Kaufmann Publishers Inc. Page(s): 37,
41, 43

Yokoo, M. and Durfee, E. H. (1991). Distributed constraint optimization as a for-
mal model of partially adversarial cooperation. Technical Report CSE-TR-101-91,
University of Michigan, Ann Arbor, MI 48109. Page(s): 36

Zhang, N. L. and Poole, D. (1996). Exploiting causal independence in Bayesian
network inference. Journal of Artificial Intelligence Research, 5:301–328. Page(s): 38

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine,
17(3):73–83. Page(s): 44

Acknowledgments

Four years (and a few months) ago I made the decision to become a PhD student, and
prolong my life as a ‘student’ even longer. An important reason for me to make this
choice was that I knew I would be supervised by Nikos Vlassis, who also supervised
me during my masters’ thesis. Nikos, I really appreciated your guidance and support
during all these years, and will definitely miss the good time we had! I also like to
thank my promotor Frans Groen for his valuable contributions to this thesis and all
other committee members for accepting the invitation to be part of my committee.

During these years I also was fortunate to have two very nice roommates, Matthijs
and Bram, who were always available to draw the attention from work with some idle
talk or nice discussions. It will be boring without you. I also like to thank all current
and past colleagues from the IAS group for a pleasant work surroundings. I especially
enjoyed lunching with the whole group. Good luck to all of you. Furthermore, I
like to thank all members of the ‘Emergentia’ group for the enjoyable diners and the
different AI discussions. It has definitely broadened my view on the field.

Where would I be without my family. I especially like to thank my mother Henny,
father Jan, lovely sister Laura, and little brother Sam for all their support and en-
couragement. Not only for the past few years, but also for all the years before.

Special thanks go also to my close friend Matthijs, Meryam, and Rose, who were
always there for me. I still remember sitting in a bar with the four of us, some
ten years ago, and we were wondering whether we still would know each other after
ten years and what we would be like. Fortunately we do and surprisingly little has
changed in all these years.

Eelco, Eugene, and Remco, thanks for all the nice evenings in the past few years
and bringing back memories to our period as a student.

And last, but not least, I like to thank my numerous friends from athletics. Al-
though colleagues sometimes wondered whether running was actually good for me
when I was again stumbling through the hallway with yet another injury, I couldn’t
do without it. It gives me a lot of satisfaction and makes me forget work for a while.
But most important, it brought me in contact with a lot of different nice people during
all these years (mainly from Aquila, the group of Peter, and the Bramsterdammers).
Most of the people I still see, but some have taking different routes. Here I like to
take the opportunity to thank all of you!

	Introduction
	Multiagent systems
	Coordination
	Sequential decision making
	Objective of the thesis
	Outlook

	A Review of Markov Models
	Introduction
	Single-agent models
	Characteristics
	Formal description
	Existing Models
	Solution techniques

	Multiagent models
	Characteristics
	Formal description
	Existing Models
	Solution techniques

	Discussion

	Multiagent Coordination
	Introduction
	Coordination graphs and variable elimination
	Payoff propagation
	The max-plus algorithm
	Anytime extension
	Centralized version
	Distributed version

	Experiments
	Trees
	Graphs with cycles

	Discussion

	Multiagent Learning
	Introduction
	Coordinated reinforcement learning
	Sparse cooperative Q-learning
	Agent-based decomposition
	Edge-based decomposition

	Experiments
	Stateless problems
	Distributed sensor network

	Discussion

	Context-Specific Multiagent Learning
	Introduction
	Context-specific coordination graphs
	Context-specific multiagent Q-learning
	Sparse tabular multiagent Q-learning
	Context-specific sparse cooperative Q-learning
	Experiments

	Learning interdependencies
	Utile coordination
	Experiments

	Discussion

	Dynamic Continuous Domains
	Introduction
	RoboCup
	The robot world cup initiative
	The RoboCup soccer server

	UvA Trilearn
	Coordination in dynamic continuous domains
	Context-specificity using roles
	Non-communicating agents

	Experiments
	Full observability
	Partial observability

	Discussion

	Conclusions
	Conclusions and contributions
	Future work

	Summary
	Samenvatting
	Bibliography
	Acknowledgments

