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Abstract

Multiagent learning problems can in principle
be solved by treating the joint actions of the
agents as single actions and applying single-
agent Q-learning. However, the number of
joint actions is exponential in the number of
agents, rendering this approach infeasible for
most problems. In this paper we investigate a
sparse representation of the Q-function by only
considering the joint actions in those states in
which coordination is actually required. In all
other states single-agent Q-learning is applied.
This offers a compact state-action value repre-
sentation, without compromising much in terms
of solution quality. We have performed exper-
iments in the predator-prey domain and com-
pared our method to other multiagent reinforce-
ment learning methods with promising results.

1 Introduction

A multiagent system (MAS) consists of a group
of agents that can interact with each other
(Vlassis, 2003). When these agents have com-
mon interests, their actions become dependent
and have to be coordinated. That is, the agents
have to select the individual actions which ben-
efit the group as a whole.

Reinforcement learning (RL) techniques
(Sutton and Barto, 1998) have been applied
successfully in many single-agent systems for
learning the policy of the agent in uncertain en-
vironments. However, extending RL to the mul-
tiagent case is not that straightforward. One of
the simplest approaches is to model the com-
plete multiagent system as one ‘big’ single agent
and thus treat the joint actions of the agents as
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single actions (joint action learners). Although
this approach leads to the optimal solution if
sufficient exploration is allowed, it is infeasible
for problems with many agents since the joint
action space explodes.

Another approach is to let the different agents
learn their policy independent of the other
agents (independent learners). FEach agent
treats the other agents as part of the en-
vironment and applies single-agent reinforce-
ment learning. The main disadvantage of
this approach is that the underlying environ-
ment transition model depends on the policy
of the other learning agents, making it non-
stationary. Although a stationary environment
is one of the prerequisites for the convergence
proof (Watkins and Dayan, 1992), this method
has been applied successfully in multiple cases
(Tan, 1993; Sen et al., 1994).

On the other hand, in many problems the
agents only need to coordinate their actions in
a few states, depending on the specific context
(Guestrin et al., 2002b). Even if these ‘coordi-
nated’ states are known to the designer in ad-
vance, it is not obvious how RL techniques can
be applied to learn values for these states (or
for state-action pairs).

In this paper we propose a multiagent RL
method which combines the above ideas. Our
method, called sparse tabular QQ-learning, tries
to learn joint action values on those states where
the agents need to coordinate explicitly. In all
other (uncoordinated) states, we apply the in-
dependent learning approach where the method
learns individual action values. The main idea
is that by specifying the coordinated states be-
forehand, the agents only have to learn to co-
ordinate their actions in these specific situa-
tions. Since in practical problems the agents
typically need to coordinate their actions only



in few states, the proposed framework allows for
a sparse representation of the complete state-
action value function, resulting in large compu-
tational savings.

The setup of the paper is as follows. In Sec-
tion[2 we review the framework of Markov Deci-
sion Processes (MDP) and Q-learning. In Sec-
tion[3 we discuss our approach in which we only
learn the joint action values in predefined states.
In Section/4 we describe the results of our exper-
iments in the predator-prey domain and com-
pare them to other multiagent Q-learning ap-
proaches. Finally, we end with a conclusion and
discussion in Section 5|

2 Markov Decision Processes and
Q-learning

In this section, we review the Markov Deci-
sion Process (MDP) framework. An observable
MDP is a tuple (S, A, R, P) where S is a fi-
nite set of world states; A is a set of actions;
R: S %x A — IR is a reward function that re-
turns the reward R(s,a) obtained after taking
action a in state s and P : S x A x S — [0,1]
is the Markovian transition function that de-
scribes the probability P(s’|s,a) of ending up
in state s’ when performing action a in state s.
The Markov property implies that the state of
the world at time ¢ provides a complete descrip-
tion of the history before time ¢.

An agent’s policy is denoted by 7 : § — A
which maps a state s € S to the action a € A
that the agent will take. The objective is to find
an optimal policy 7* that maximizes the utility

U*(s) = In;‘;,LXE Z’th(st,w(stmso =s| (1)

t=0

for each state s. The expectation operator
E[-] averages over reward and stochastic tran-
sitions and v € [0,1) is the discount factor.
This value thus represents the expected fu-
ture discounted reward for each state s and
given policy w. We can also represent this
using Q-values which explicitly store the ex-
pected discounted future reward for each state
s and possible action a: Q*(s,a) = R(s,a) +
v o P(s'|s,a) maxy Q*(s',a’). At any state s,
the optimal policy is then obtained by choosing
the action arg max, Q*(s,a).

Reinforcement  learning

(RL)  methods

(Sutton and Barto, 1998) can be applied to
estimate QQ*(s,a) by interacting directly with
the environment. Q-learning is a widely used
learning method when the transition model
is unavailable (Watkins, 1989). This method
starts with an initial estimate Q(s,a) for each
state-action pair. During exploration it up-
dates the Q-values based on the received reward
R(s,a) and the perceived state transition from
s to s’ using

Q(s,a) == (1 —a)Q(s,a)+
a[R(s,a) + 7 max Q(s',d)] (2)

where a € (0,1) is the learning rate that speci-
fies the incremental update. Tabular Q-learning
converges to the optimal Q*(s, a) when all state-
action pairs are visited infinitely often by means
of an appropriate exploration strategy.

Extending the above methods to multiagent
systems involves several issues, for instance
whether the agents share the same reward,
whether they observe the selected joint action,
whether they model each other, etc. In our case,
we assume that each agent receives an individ-
ual reward R;(s,a) based on the selected joint
action a in state s. We assume that in states
where the action of an agent is independent of
the other agents, the reward is completely based
on the action taken by this agent. For example,
when two cleaning robots are working in two
separate rooms and one performs an action re-
sulting in a negative reward (e.g., bumping into
a wall), only this agent will receive a negative
reward since it makes no sense to incorporate
this in the reward function of the agent work-
ing in the other room. On the other hand, if
an agent is in a coordinated state, it receives
the same reward as the agents it is coordinating
with (e.g., both agents will receive the same neg-
ative reward when they are bumping into each
other).

The most direct approach to extend MDP
and Q-learning to a multiagent environment is
to regard the complete system as one large sin-
gle agent in which the joint action is regarded
as a single action. We will call this approach,
where each agent learns the value of joint ac-
tions as if they were single actions, MDP learn-
ers. This can be implemented by either assum-
ing a central controller that communicates to



each agent its individual action, or by making
certain common knowledge assumptions about
the agents. For instance, the problem of know-
ing whether the other agents are taking an ex-
ploration action can be solved by assuming that
the agents are using the same random num-
ber generator and the same seed, and these
facts are common knowledge among all agents
(Vlassis, 2003). Although treating the multia-
gent environment as a single agent leads to the
optimal solution, it is infeasible for problems
with many agents since the joint action space
becomes prohibitively large.

A second approach is to let each agent learn
its strategy independently from the other agents
and regard the other agents as part of the envi-
ronment (Tan, 1993; Sen et al., 1994). We will
refer to this method as independent learners
(IL). The convergence proof for Q-learning does
not hold in this case, since the underlying tran-
sition model becomes non-stationary because of
its dependence on the policy of the other learn-
ing agents (Watkins and Dayan, 1992).

3 Sparse Tabular Q-learning

In many problems, agents only have to co-
ordinate their actions in a specific context
(Guestrin et al., 2002b).  For example, two
cleaning robots only have to take care that they
do not obstruct each other when they are clean-
ing the same room. When they are working
in two separate parts of the building, they can
work independently. These types of context-
specific coordination requirements are explicitly
utilized in our method.

The main idea is to use a sparse representa-
tion of the joint state-action space by specify-
ing in which states the agents do (and in which
they do not) have to coordinate their actions.
Roughly, in the uncoordinated states the agents
apply the IL method, and in the coordinated
states the agents apply the MDP learners ap-
proach.

Because of the distinction in action types for
different states, we also have to distinguish be-
tween representations for the Q-values. Each
agent ¢ in our system maintains a single-action
value table @); for the uncoordinated states, and
one joint action value table for the coordinated
states!. When the agents move from coordi-

Note that this shared Q-table is either stored central-

nated to uncoordinated states and vice versa,
values from the different Q-tables have to be
combined in order to update the Q-values dur-
ing learning. There are four different situations
that must be taken into account.

3.1 Uncoordinated to uncoordinated
state

When moving from an uncoordinated state s
to another uncoordinated state s’ an agent acts
independently with respect to the other agents
and we can apply single-agent reinforcement
learning. The table Q; which only depends on
the individual action of agent ¢ is thus updated
as in Eq. (2):

Qi(s,a;) := (1 — )Qi(s,a;)+
o|Ri(s,a;) + 7 max Qi(s',a)]. (3)

As mentioned earlier, the received reward R; in
an uncoordinated state is local. This ensures
that the rewards of the other agents cannot in-
fluence this update rule.

3.2 Coordinated to coordinated state

When moving from a coordinated state s to an-
other coordinated state s’, the update rule is
also equal to Eq. (2) since we again update the
Q-value based on the future discounted reward
from the same table:

Q(s,a) := (1 —a)Q(s,a)+
a[R(s,a) + 7 max Q(s',d)]. (4)

Now we update the shared Q-table based on
the global reward R. In our implementation
the global reward R(s,a) for the joint action
a is defined as ), Ri(s,a;). The sum can be
justified since we assume the different local re-
wards are assigned independently and we only
consider common interest situations.

3.3 Coordinated to uncoordinated state

When moving from a coordinated state s to an
uncoordinated state s’ we have to back up the
sum of expected future discounted reward from
the different independent Q-tables to the shared

ized or updated in exactly the same way by all individual
agents.



Q-table. We do that as follows:

Q(s,a) == (1 —a)Q(s,a)+
a|R(s.a) +7 Y max Qi(s.a))] - (5)

The global Q-value in the uncoordinated state s’
equals the sum of all individual Q-values.

3.4 Uncoordinated to coordinated state

When moving from an uncoordinated state s
to a coordinated state s’ we have to back up
the expected future discounted reward from the
shared Q-table back to the different indepen-
dent tables. One approach is to divide this value
equally among the independent tables. The up-
date rule then looks as follows:

Qi(s,a;) = (1 — @)Q;(s,a;) +
a[Ri(s, a;) + 7% max Q(s',d")] (6)

where n equals the number of agents. When
moving from an uncoordinated state, each agent
is rewarded (either negative or positive) with
the same fraction of the expected future dis-
counted reward from the resulting coordinated
state. Each agent thus contributes equally to
the coordination. Other distribution schemes
are also possible (see conclusions).

4 Experiments

We have applied our method to the well-
known Predator-Prey (or Pursuit) Domain
(Kok and Vlassis, 2003) in which the goal of
the predators is to capture the prey as fast
as possible in a discrete grid-like world. We
have concentrated on a coordinated problem in
which two predators in a fully observable 10 x 10
toroidal grid have to capture a single prey. An
example grid with two predators and one prey
is depicted in Figure [I. Each agent can move
deterministically to one of the adjacent cells or
stand still. In our case, the prey is captured
when both predators are located in an adjacent
cell to the prey and only one of the two preda-
tors moves to the location of the prey. In Fig-
ure 2 the prey can be caught using one of two
action combinations. Either the predator above
the prey remains on its current position and the
other predator moves to the cell to its left or the
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Figure 1: An example situation with two preda-
tors and one prey.

upper predator moves down to the prey position
and the other predator remains on its current
position. For all other combinations in which
one of the predators moves to the prey position,
the predator that moves to the prey is penalized
and placed on a random position on the field.
Predators are also penalized when they collide
with each other by moving to the same cell (in-
dependent of the prey position). The policy of
the prey is fixed. It remains on its current posi-
tion with a probability of 0.2. In all other cases
it moves to one of the free adjacent cells with
uniform probability.

To apply our approach to this problem, we
create three Q-tables. The first table relates to
the shared Q-table which stores the Q-values
for the joint actions of the agents when located
in a coordinated state. A state is defined as
the position of the two predators relative to the
prey position. We assume that the predators
only have to coordinate their actions when they
are close to each other, so we only add states
to this Q-table corresponding to the following
situations:

e the (Manhattan) distance to the other
predator is smaller or equal than two cells.

e both predators are within a distance of two
cells to the prey.

The other two tables represent the policy
for the agents when located in all other (un-
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Figure 2: Possible capture position for the two
predators.

coordinated) states. For this particular prob-
lem, this results in 1,248 coordinated states
and 8,454 uncoordinated states. So in total,
115,740 (= 1,248 - 52 +2- 8,454 - 5) state-action
pairs are updated.

During learning we use the four update rules
from Section[3 to update the values in the three
Q-tables. In all cases each predator receives a
local reward of 37.5 when helping in capturing
the prey and receives a negative local reward
of —50.0 when colliding with another predator.
This relates to a global reward of respectively
75.0 and —100.0 in the case of two agents. When
moving to the prey without support that agent
receives a reward of —5.0. In all other cases
the reward is —1.0. Finally, we use one-step
Q-learning with a Boltzmann distribution

Q(s:0)/T
Zai eQ(s,ai)/T (7)

with a temperate T of 0.4 for action selection,
a learning rate « of 0.3, and a discount factor
of 0.9.

We compare our method to the two other Q-
learning methods, IL and MDP learners, men-
tioned earlier. In the IL approach case, this
corresponds to 48,510 (= 99 - 98 - 5) different
state-action pairs for each agent. For the second
comparison, we model both agents as a com-
plete MDP with the joint action represented
as a single action for all possible states. In
this case the number of state action-pairs equals
242,550 (= 99 - 98 - 52). Finally, we also com-
pared the three methods with a manually im-
plemented policy in which a predator first min-
imizes its distance to the prey and then moves
along with the prey until the other predator is
also located next to the prey. Next, based on
social conventions, one predator moves to the
prey position and the other remains on its cur-
rent position in order to capture the prey.
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Figure 3: Capture times for the learned pol-
icy for the three different methods for the first
200,000 episodes. Results are averaged over 10
runs.

Figure 3 shows the capture times for the
learned policy during the first 200,000 episodes
for the different methods. The results are gen-
erated by running the current learned policy af-
ter each interval of 500 episodes five times on a
fixed set of 100 starting configurations. During
these 500 test episodes no exploration actions
were performed. This complete procedure was
repeated for 10 different runs. The 100 starting
configurations were selected randomly before-
hand and were used during all 10 runs.

Both the independent learners and our pro-
posed method learns quickly in the beginning
with respect to the MDP learners. This is
caused by the fact that learning is based on
fewer state-action pairs. However, the indepen-
dent learners do not converge to a single policy
but keep oscillating. This is caused by the fact
that they do not take the action of the other
agent into account. When both predators are lo-
cated next to the prey and one predator moves
to the prey position, this predator is not able
to distinguish between the situation where the
other predator remains on its current position
or performs one of its other actions. In the first
case a positive reward is returned, while in the
second case a large negative reward is received.
However, in both situations the same Q-value is
updated.

These coordination dependencies are explic-
itly taken into account in the two other ap-



Method Avg. capt. time
Independent learners 16.08
Manual policy 14.44
Sparse Tabular 12.70
MDP Learners 13.92

Table 1: Capture times of the different methods
after 200,000 episodes. All results are averaged
over 5000 episodes.

proaches. In the MDP learners approach, these
dependencies are taken into account for ev-
ery state which results in a slowly decreas-
ing learning curve because of the large state-
action space. The sparse tabular approach has
a quicker decreasing learning curve because only
joint actions are considered for these states in
which the agents have to coordinate their ac-
tions.

Table 4] shows the average capture times for
the different approaches. After 200,000 episodes
our method has the best average capture time,
while the MDP learners approach still hasn’t
converged completely. Experiments show that
only after approximately 450,000 episodes, the
MDP learners approach is able to improve upon
the policy learned by the sparse tabular method
(which already converges around approximately
60,000 episodes) resulting in an average capture
time of 12.34. This is better than the sparse tab-
ular approach which is caused by the fact that
not all necessary coordination requirements are
added to the shared Q-table. We explicitly as-
sumed that the predators did not have to coor-
dinate when they were far away from each other,
although already coordinating in these situa-
tions might have an additional positive influence
on the final result. Of course, it is possible to
extend the shared Q-table with more states, but
that would decrease the learning speed because
of the increased state-action space.

5 Conclusions and discussion

In this paper, we discussed a sparse tabular
multiagent Q-learning approach. The proposed
method utilizes the fact that many states in a
multiagent problem do not require any coor-
dination between the agents. Beforehand, we
specify the states in which the agents have to
coordinate their actions and then apply joint ac-
tion Q-learning to learn the policy of the agents

in those states. The independent learners ap-
proach is used for the states in which the agents
do not have to coordinate their actions. During
learning rewards received in the specified coor-
dinated states are propagated back to the un-
coordinated states which causes agents to learn
to move to coordinated states. The proposed
method offers large savings in terms of the state-
action representation, without significantly af-
fecting the solution quality.

Results in the predator-prey domain showed
that this method improves the learning time
considerably and the final results are compa-
rable to the optimal policy. Furthermore, our
method clearly outperforms the IL approach
that was not able to converge for the given prob-
lem.

The crucial point in our approach is the way
we back up the expected future discounted re-
ward when moving from a uncoordinated state
to a coordinated state. Our choice of divid-
ing the joint Q-value equally among the agents
seems reasonable, but other options include di-
viding the value proportionally to the local im-
mediate reward or to the individual Q-values.
We are currently performing more experiments
with these different settings.

Our approach bears resemblance to the co-
ordinated reinforcement learning approach of
(Guestrin et al., 2002a) where the global Q-
function is explicitly represented as the sum of
local Q-functions and the learning rule is de-
fined accordingly. The main difference is that in
that work the agents are always updating their
local Q-functions based on the best joint action,
while in our case the updates may also involve
the best individual actions of the agents (e.g.,

in Eq. (5)).

In this paper, we only investigated tabu-
lar environments. As future work, we like
to apply our method also to continuous envi-
ronments where the state is represented using
function approximation techniques as CMAC
(Watkins, 1989) (also known as tile coding
(Sutton and Barto, 1998)).

Another interesting direction is to see
whether the coordination dependencies which
are now set beforehand, can be learned auto-
matically.
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