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Abstract

This thesis describes the incremental development and main features of a synthetic multi-agent system
called UvA Trilearn 2001. UvA Trilearn 2001 is a robotic soccer simulation team that consists of eleven
autonomous software agents. It operates in a physical soccer simulation system called soccer server which
enables teams of autonomous software agents to play a game of soccer against each other. The soccer server
provides a fully distributed and real-time multi-agent environment in which teammates have to cooperate
to achieve their common goal of winning the game. The simulation models many real-world complexities
such as noise in object movement, noisy sensors and actuators, limited physical abilities and restricted
communication. This thesis addresses the various components that make up the UvA Trilearn 2001
robotic soccer simulation team and provides an insight into the way in which these components have been
(incrementally) developed. Our main contributions include a multi-threaded three-layer agent architecture,
a flexible agent-environment synchronization scheme, accurate methods for object localization and velocity
estimation using particle filters, a layered skills hierarchy, a scoring policy for simulated soccer agents and
an effective team strategy. Ultimately, the thesis can be regarded as a handbook for the development of a
complete robotic soccer simulation team which also contains an introduction to robotic soccer in general
as well as a survey of prior research in soccer simulation. As such it provides a solid framework which
can serve as a basis for future research in the field of simulated robotic soccer. Throughout the project
UvA Trilearn 2001 has participated in two international robotic soccer competitions: the team reached
5th place at the German Open 2001 and 4th place at the official RoboCup-2001 world championship.
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Chapter 1

Introduction

In the eyes of many people soccer is not a game: it is a way of life! Although we do not quite share this
view, it cannot be denied that the game of soccer plays a prominent role in the society of today. Despite
this, it is probably not very common to find two students that write a master’s thesis which for a large
part revolves around the subject. In the same way it is probably not very common to think about soccer
as a game that can be played by robots. Nevertheless, robotic soccer is a subject which in the scientific
community has gained in popularity over the last five years and as such it has been the subject of our
research. This first chapter provides an introduction to the subject of robotic soccer from a multi-agent
perspective. The chapter is organized as follows. Section 1.1 describes the Robot World Cup (RoboCup)
Initiative and its ultimate long-term goal. In Section 1.2 we then discuss the subject of robotic soccer
from a multi-agent perspective. The main objectives of our research as well as the general approach that
we have followed to achieve them are presented in Section 1.3. The chapter is concluded in Section 1.4
with an overview of the contents of this thesis.

1.1 The Robot World Cup Initiative

The Robot World Cup (RoboCup) Initiative is an attempt to foster artificial intelligence (AI) and in-
telligent robotics research by providing a standard problem where a wide range of technologies can be
integrated and examined [45]. RoboCup’s ultimate long-term goal is stated as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win
a soccer game, complying with the official rules of the FIFA, against the winner of the most
recent world cup for human players.” [44]

It is proposed that this goal will be one of the grand challenges shared by the robotics and AI community
for the next 50 years. The challenge is indeed a formidable one and given the current state of affairs in
the fields of robotics and AI it sounds overly ambitious. Therefore, many people are sceptical and think
that the goal will not be met. History has proven however, that human predictive powers have never
been good beyond a decade. A few examples are in place here. On the 17th of December 1903, Orville
Wright made the first man-carrying powered flight in an aircraft built by himself and his brother Wilbur
Wright. The flight covered about 120 feet and lasted for 12 seconds [40]. If at that point someone would
have claimed that roughly 66 years later the first man would set foot on the moon, he would surely have

1
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been diagnosed as mentally insane. However, on the 20th of July 1969, Neil Armstrong stepped out of the
Apollo-11 Lunar Module and onto the surface of the moon [15]. Also, it took only 51 years from the release
of the first operational general-purpose electronic computer in 19461 to the computer chess program Deep
Blue which beat the human world champion in chess in 19972. These examples show that many things
can happen in relatively short periods of time and that one thus has to be careful when dismissing the
RoboCup long-term objective as being unrealistic. There is every reason to believe however, that building
a team of humanoid soccer robots will require an equally long period of time as for the previous examples.

Since it is not likely that the ultimate RoboCup goal will be met in the near future, it is important to
also look for short-term objectives. In the first place, it is the intention of the RoboCup organization
to use RoboCup as a vehicle to promote robotics and AI research by providing a challenging problem.
RoboCup offers an integrated research task which covers many areas of AI and robotics. These include
design principles of autonomous agents, multi-agent collaboration, strategy acquisition, real-time reason-
ing, reactive behavior, real-time sensor fusion, learning, vision, motor control, intelligent robot control,
and many more [46]. In order for a humanoid robot team to actually perform a soccer game, a number
of technological breakthroughs must be made and all these technologies must be incorporated. The de-
velopment of these technologies can be seen as the short-term objective of the RoboCup project and even
when the main goal is never achieved, several technological advancements will emerge from the effort to
get there. A second intention of the RoboCup organization is to use RoboCup for educational purposes
and to stimulate the interest of the general public for robotics and AI by setting forth an exciting and
broadly appealing long-term objective. Currently, it seems that this intention has already succeeded.
An increasing number of universities all over the world organize study projects which are related to the
different aspects of RoboCup. Furthermore, the interest from the media and the general public has been
increasing in successive RoboCup competitions held in recent years.

Another aspect of RoboCup is that it provides a standard problem for the evaluation of various theories,
algorithms and architectures. Using a standard problem for this purpose has the advantage that different
approaches can be easily compared and that progress can be measured. Computer chess is a typical
example of such a standard problem which has been very successful. It has mainly been used for the
evaluation and development of different search algorithms. One of the most important reasons for the
success of computer chess as a standard problem has been that the strength of a computer chess program
could be clearly defined by its Elo rating3. As a result, progress in the domain could be easily measured via
actual games against human players. This is not (yet) the case for robotic soccer. With the accomplishment
of Deep Blue in 1997 however, computer chess has achieved its long-term objective. The AI community
therefore needs a new challenge problem and there is now general agreement that robotic soccer is suitable
as a next long-range target. The main reason for this agreement is that the domain characteristics of
robotic soccer are in sharp contrast to those of computer chess, as is illustrated in Table 1.1, and are
considered to generate technologies which are important for the next generation of industries.

In order to achieve the RoboCup long-term objective, the RoboCup organization has introduced several
robotic soccer leagues which each focus on different abstraction levels of the overall problem. Currently,
the most important leagues are the following:

• Middle Size Robot League (F-2000). In this league each team consists of a maximum of four
robots, which are about 75cm in height and 50cm in diameter. The playing field is approximately 9
by 5 meters and the robots have no global information about the world. Important research areas
for this league include localization, vision, sensor fusion, robot motor control and hardware issues.

1The ENIAC was built by J. Presper Eckert and John Mauchly at the University of Pennsylvania [67].
2In May 1997, Deep Blue beat Gary Kasparov 3.5-2.5 over 6 matches [86].
3The most common rating system used for chess players is called the Elo system, which is named after its inventor [29].
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Computer chess Robotic soccer

Environment static dynamic
State change turn-taking real-time
Information accessibility complete incomplete
Sensor readings symbolic non-symbolic
Control central distributed

Table 1.1: Domain characteristics of computer chess compared to those of robotic soccer. From [44].

• Small Size Robot League (F-180). In this league each team consists of five robots, which are
about 20cm in height and 15cm in diameter. The playing field has the size of a table-tennis table
and an overhead camera provides a global view of the world for each robot. Research areas which are
important for this league include intelligent robot control, image processing and strategy acquisition.

• Sony Legged Robot League. In this league each team consists of three Sony quadruped robots
(better known as AIBOs). The playing field is similar in size to that for the Small Size League. The
robots have no global view of the world but use various colored landmarks which are placed around
the field to localize themselves. The main research areas for this league are intelligent robot control4

and the interpretation of sensory information5.

• Simulation League. In this league each team consists of 11 synthetic (software) agents which
operate in a simulated environment. Research areas which are being explored in this league in-
clude machine learning, multi-agent collaboration and opponent modeling. Currently, the simulation
league is by far the largest due to the fact that no expensive hardware is needed to build the team.
Furthermore, it is much easier (and cheaper) to test a simulation team against different opponents.

It is the intention of the RoboCup organization to introduce a RoboCup Humanoid League for the
first time at the RoboCup-2002 robotic soccer world championship in Fukuoka (Japan). For a detailed
account of the different RoboCup leagues and plans for future leagues, we refer to [108].

We will mainly concentrate on the RoboCup Simulation League throughout this thesis. The simulation
league is based on a soccer simulation system called the RoboCup Soccer Server [32]. This system enables
teams of autonomous software agents to play a game of soccer against each other. The soccer server
provides a multi-agent environment in which everything happens in real time and where sensing and
acting are asynchronous. Various forms of uncertainty are added into the simulation such as sensor and
actuator noise, noise in object movement, limited perception, unreliable low-bandwidth communication
and limited physical ability. One of the advantages of the soccer server is the abstraction made, which
relieves researchers from having to handle robot problems such as object recognition and movement. This
abstraction makes it possible to focus on higher level concepts such as learning and strategic reasoning.

1.2 Robotic Soccer from a Multi-Agent Perspective

Distributed Artificial Intelligence is a subfield of AI which is concerned with systems that consist of
multiple independent entities that interact in a domain. Traditionally, this field has been broken into two

4AIBOs have as many as 20 degrees of freedom.
5AIBOs have 7 different types of sensors: an image sensor, an audio sensor, a temperature sensor, an infrared distance sensor,
an acceleration sensor, pressure sensors (head, back, chin and legs) and a vibration sensor.
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subdisciplines: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS) [6]. DPS focuses on
information management issues, such as task decomposition and solution synthesis, in systems consisting
of several components which work together towards a common goal. MAS on the other hand aims to
provide principles for the construction of complex systems containing multiple independent agents and
focuses on behavior management issues (e.g. coordination of behaviors) in such systems [101]. Since
robotic soccer is an example of a multi-agent domain, we are mainly interested in the latter of these two
subdisciplines throughout this thesis.

An agent can be seen as anything that is situated in an environment and that perceives this environment
through sensors and acts upon it through effectors [84]. Besides this, the agent might have some additional
knowledge about the domain or possess several sophisticated cognitive capabilities. Often, the agent also
has a goal which he tries to achieve. When multiple agents reside in the same environment this is called
a multi-agent system. The difference between multi-agent systems and single-agent systems is that multi-
agent systems consist of several agents which model each other’s goals and actions. From an individual
agent’s perspective, the main difference is that other agents can affect the dynamics of a multi-agent
environment in an unpredictable way. Furthermore, the agents in a multi-agent system might interact
directly in the form of communication. When a group of agents in a multi-agent system have the same
long-term goal, they can be regarded as a team. In order to achieve this goal, the agents must coordinate
their behaviors (e.g. through communication). They must be able to act effectively both autonomously
and as part of the team. In case that the environment also contains other agents which have goals that
are incompatible with the common team goal, these other agents are the team’s adversaries.

For general applications the use of MAS in the design of complex systems offers several advantages. Some
domains even require the use of MAS as a discipline. For example, in cases where there are different
entities (think of people, organizations, etc.) with different (possibly conflicting) goals and proprietary
information, a multi-agent system is necessary to model their interactions [101]. But even in domains
which do not necessarily require MAS, their use can bring several advantages:

• The presence of multiple agents can provide a method for parallel computation, thereby speeding
up the operation of the system. This is especially the case for domains in which the overall task can
be broken into several independent subtasks that can be handled by separate agents.

• A multi-agent system usually has a high degree of robustness. In systems controlled by a single
entity, a single failure can cause the entire system to crash. Multi-agent systems on the other hand
are said to degrade gracefully: if one or several agents fail, the system will still be operational.

• Multi-agent systems are inherently modular leading to simpler programming. Programmers can
identify subtasks and assign control of those subtasks to different agents. This is usually easier than
using a centralized agent for the whole task although for some applications this is more natural (e.g.
when actions cannot be executed in parallel because the output of one is input for the other).

• The modularity of multi-agent systems enables one to add new agents to the system when necessary.
This is called scalability. Adding new capabilities to a monolithic system is not so easy however.

• An advantage of multi-agent systems over single-agent systems is that a multi-agent system can ob-
serve the environment and perform actions in the environment at multiple locations simultaneously.
It is said that a multi-agent system can take advantage of geographical distribution [101].

• Multi-agent systems usually have a higher performance-cost ratio than single-agent systems. A single
robot with all the necessary capabilities for accomplishing a task is often much more expensive than
the use of multiple (cheaper) robots which each have a subset of these capabilities.
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From the viewpoint of Distributed Artificial Intelligence a robotic soccer game is a specific but very
attractive multi-agent environment in which many interesting research issues arise [45]. In a robotic
soccer game there are two competing teams. Each team consists of multiple agents that have to work
together to achieve a common goal: winning the game. To fulfill this goal the team needs to score and this
can be seen as a subgoal. In order to achieve this subgoal, each agent must behave quickly, flexibly and
cooperatively by taking local and global situations into account. This means that although perception and
action are local for each agent, they should also be part of a larger collaborative plan which is shared by
all the teammates. Since the goals of both competing teams are incompatible, the opponent team can be
seen as a dynamic and obstructive environment which might disturb the achievement of the common team
goal. This makes the domain collaborative and adversarial at the same time [90]. Another interesting
characteristic of robotic soccer is that the domain is highly dynamic and requires real-time decision
making since success depends on acting quickly in response to the dynamically changing environment.
Furthermore, the agents cannot accurately perceive or affect the world due to sensor and actuator noise.
In addition, they have to deal with the fact that large parts of the state space are unobserved (‘hidden’)
because their perception range is limited.

All the characteristics of robotic soccer described above also apply in simulated robotic soccer. This too is a
fully distributed multi-agent domain with both teammates and adversaries. The RoboCup Soccer Server
models many real-world complexities such as noise in object movement, noisy sensors and actuators,
limited physical ability and restricted communication. Agents must respond to events and make their
decisions in real time. They only have a partial view of the world at any moment which causes large
parts of the state space to remain hidden from them. In addition, the perception and action cycles in the
simulation are asynchronous which makes it impossible to rely on the traditional AI paradigm of using
perceptual input to trigger actions. An agent also has only limited information about environmental state
transitions resulting from the fact that the actions performed by teammates and opponents are unknown
to him [103]. Since the state space of a soccer game is enormous and too large to hand-code all possible
situations and agent behaviors, it is essential that agents learn to play the game strategically. Simulation
soccer from a multi-agent perspective is a very suitable domain for research in this direction.

1.3 Main Objectives and Approach

In the past, the University of Amsterdam has been successful in the RoboCup Simulation League with
the team Windmill Wanderers [17, 18], which became third at the world championship in 1998. Sadly
the creator of this team, Emiel Corten, died in 1999 and as a result the soccer simulation project came
to a halt. Its revival came in the autumn of the year 2000 when we started our master’s graduation
project on simulated robotic soccer. The main objective of the project was twofold. Firstly, we had to
restart the soccer simulation project and provide a solid foundation for it which would enable others to
continue the effort after our graduation. Secondly, we had to put up a good performance at the RoboCup-
2001 world championship held in the summer of 2001. Clearly, these two objectives were not completely
compatible. Performing well at RoboCup-2001 would mean that we had to set up a complete working
team in a relatively short period of time and it would then not be feasible to complete each component of
the system in an optimal way. The challenge was thus to find a satisfactory trade-off between the two.

Creating a complete multi-agent system, such as a simulated robotic soccer team, is not a straightforward
task. The main difficulty arises from the fact that such a system consists of many different components
which have to operate together in an appropriate way. Furthermore, building each separate component is
a difficult task in itself. It is obvious that a project of this scale cannot become a success if it is not well
organized. Software engineering aspects therefore play a prominent role in such an effort. It is important
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to set up a software architecture that allows for the various components to be combined in a modular
fashion. This will make it easier to extend and debug the system and thus facilitates future use by others.
Throughout the project much attention has therefore been focused on software engineering issues.

Another problem that had to be dealt with was that the competitions in which our team participated
provided us with strict deadlines for producing a complete working system. This meant that we needed
to have all the necessary components of the system working and successfully integrated by the time that
the competitions started. However, the resources (time, manpower6, etc.) which were available to achieve
this were limited and this conflicted somewhat with our objective to set up a solid platform for the
project that others could build upon. It was our initial objective to strive for optimal solutions to various
subproblems of the overall problem and to provide a scientific validation for each of them. As a result,
the implementation of these system components would need no future alterations and this would enable
our successors to concentrate mainly on other issues. However, this approach would leave us with several
high-quality components and not with a complete working system that could participate at RoboCup-
2001. It was therefore decided to implement some of the system components suboptimally and to only
optimize the ones which we thought would be most crucial for the success of the team.

Our initial intention was to use the available components of the Windmill Wanderers team [16] as a basis
and to further develop the agent control layers to create a better team. However, after studying literature
on the subject of simulated robotic soccer it became clear that the Windmill Wanderers agent architecture
was not suitable to build upon. This was mainly because it was single-threaded (which restricted the
performance) and based on an old version of the soccer server to which new features had been added in
the meantime. We therefore started to redesign the current architecture into a multi-threaded one with
a more modular structure. During this ‘re-engineering’ process we encountered several problems which
were primarily caused by the fact that the existing code did not conform to regular software standards,
i.e. it was not well structured and scarcely documented. Because of these difficulties we also investigated
the possibility of using the low-level implementation of other previously successful teams as a basis for our
team, but we soon discovered that this would give us the same problems as with the Windmill Wanderers
code. We felt that it would be more time-consuming to reuse existing source codes and restructure them
into the architecture that we desired than to write all the code ourselves. Furthermore, it was our opinion
that the low-level methods used by the top teams from recent years could be improved in several ways. We
therefore decided to build a new team from scratch. This would enable us to structure the code exactly as
we wanted and had the additional advantage that at each moment in time we would know the complete
functionality of the system7 which would make it much easier to extend and debug the code.

The main problem when building a large system, such as a simulated robotic soccer team, is that it is too
big to be completely and accurately specified in advance and too complex to be built without faults. We
have therefore implemented our team according to a software development technique called incremental
development [8, 62, 68]. This approach dictates that a system should first be made to run, even though
it does nothing useful except for creating the proper set of dummy objects. Each object is then gradually
refined by adding more and more functionality until the system is fully ‘grown’. The main advantage of
this technique was that it gave us a working system at all times (which was good for moral) that could be
tested and compared to previous versions. In this way we would at least be sure to have a working team
ready for the forthcoming RoboCup competitions. Furthermore, the approach made it easier to locate
the faults in the system since we always knew that they had to originate from the last refinement step.
We applied incremental development by first creating an extremely simple system that had the desired
multi-threaded architecture and that could perform the basic loop of receiving information from the server,
processing this information and sending an action to the server. Each component in this system was built

6Having more people yields several benefits, but also brings many disadvantages. This will be addressed in Appendix A.3.
7A problem with using large programs written by other people is that you never exactly know which functions have been
implemented and how it is done.
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in a simple way only performing its task at a very elementary level. Some components would even do
nothing just being implemented as void subroutines taking their correct place in the overall architecture.
Although this initial system clearly did not do much, it certainly did it correctly and it could be regarded
as our first ‘working’ version. We then progressively refined this simple implementation by extending the
functionality of the different components one by one while keeping the architecture as a whole intact. This
has eventually led to the version of our team that participated at the RoboCup-2001 world championship.

1.4 Guide to the Thesis

In this thesis we describe the incremental development and main features of the UvA Trilearn 20018 robotic
soccer simulation team [19, 21] that we have developed for our master’s graduation project. Besides a
high-level description of the various aspects of this team we also present the most important details of
our implementation since this is something that we found lacking in current literature. Most publications
related to RoboCup only describe the main contributions of a team on an abstract level and fail to
provide information concerning the implementation of these contributions. Despite the fact that some
teams actually release their source code after each RoboCup tournament, this makes it difficult to find
a mapping between the described methodologies and the implementation of a team. In our thesis we
try to bridge this gap by providing a detailed description of each component in the UvA Trilearn agent
architecture along with the underlying reasoning that has motivated their design. Ultimately, the thesis
can be regarded as a handbook for the development of a complete robotic soccer simulation team. In
combination with the source code [48] that we have released it provides a solid framework for new teams
to build upon and it can serve as a basis for future research in the field of simulated robotic soccer. In
the remainder of this section we present a general description of the contents of each chapter that follows.

• Chapter 2 presents a survey of related work that has resulted from a study of literature on multi-
agent systems and simulated robotic soccer teams in particular. A summary is given showing the
main features of each team that was studied. In this way the reader will get an idea of the research
directions that have previously been explored.

• Chapter 3 introduces the RoboCup Soccer Server simulation environment which has been the
setting of our research. It describes the soccer server in detail and as such provides the context for
the rest of the thesis. Topics that will be discussed include the sensor and action models in the
simulation, the object movement model and the use of heterogeneous players and the coach.

• Chapter 4 describes the UvA Trilearn 2001 agent architecture. The different layers that make up
this architecture will be shown together with the various components of the system and the way in
which these components interact.

• Chapter 5 addresses the agent-environment synchronization problem and introduces a flexible syn-
chronization method which provides an optimal synchronization between our agents and the simu-
lation environment. A comparative analysis of different synchronization schemes will be presented
which shows that this method clearly outperforms the alternatives.

• Chapter 6 presents the UvA Trilearn agent world model which can be regarded as a probabilistic
representation of the world state based on past perceptions. It contains information about all the

8This choice of name can be motivated as follows. The first part refers to the University of Amsterdam. The second part
consists of two words: ‘tri’ and ‘learn’. ‘Tri’ is derived from ‘three’ which is a number that has several different meanings for
our team: we have three team members (two students and one supervisor), we have a three-layer agent architecture and we
use three threads. ‘Learn’ refers to the learning aspect of the team. Although in the end we have not had enough time to use
learning as much as we wanted, it was our intention to use machine learning techniques to optimize several agent behaviors.
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objects on the soccer field (their positions, velocities, etc.) and various methods which use this
information to derive higher-level conclusions. The different attributes which are contained in the
model are described and it is shown how the model is updated upon the receival of various kinds
of sensory perceptions. Especially the update methods which have been used for object localization
and velocity estimation of dynamic objects will be described in some detail.

• Chapter 7 presents the UvA Trilearn skills hierarchy and gives a detailed description of the various
player skills which are available to the agents. Some of the player skills that will be discussed include
turning towards an object, kicking the ball to a desired position on the field, intercepting the ball,
dribbling with the ball, passing to a teammate, marking an opponent and goaltending.

• Chapter 8 introduces a scoring policy for simulated soccer agents. This policy enables an agent
to determine the optimal target point in the goal together with an associated probability of scoring
when the ball is shot to this point in a given situation. It will be shown that this problem has a dual
solution after which the underlying statistical framework for computing the scoring probability will
be described. This framework is partly based on an approximate method that we have developed
for learning the relevant statistics of the ball motion which can be regarded as a geometrically
constrained continuous-time Markov process.

• Chapter 9 describes the UvA Trilearn 2001 team strategy. Topics that will be discussed include
team formations, the use of heterogeneous players, a model for inter-agent communication and the
action selection mechanism which the agents use to choose an appropriate action in a given situation.

• Chapter 10 presents the results of the UvA Trilearn 2001 soccer simulation team at two interna-
tional robotic soccer competitions in which it participated. We will also discuss several advantages
and disadvantages of robotic soccer competitions from a scientific perspective.

• Chapter 11 is the final chapter of this thesis. It summarizes our main contributions and presents
the most important conclusions that can be drawn from the project. In this chapter we will also
outline several promising directions for future work.

• Appendix A addresses several software engineering aspects which have played an important role
throughout the project. It specifically focuses on issues concerning the implementation of our team
and shows how we have tried to avoid the problems that typically arise in large software projects.
Some of the topics that will be discussed include code documentation, version management, incre-
mental software development, manpower distribution and debugging.



Chapter 2

A Survey of Related Work

During the initial stages of the project much time was spent on studying literature on the subject of
multi-agent systems (MAS) and on simulated robotic soccer in particular. This has enabled us to become
familiar with the robotic soccer domain and has provided us with a great deal of knowledge that has been
very useful throughout the project. In retrospect, this has been an important part of our effort and we
therefore feel that it is appropriate to discuss our findings in a separate chapter. In this way the reader
will get an idea of the research directions that have previously been explored. This chapter is organized as
follows. In Section 2.1 we present a short survey of the main features of several soccer simulation teams
that we have studied and provide references for further reading about the methods that these teams have
used. For each team, these references are summarized in Section 2.2 along with an overview of the most
significant results of this team in international robotic soccer competitions.

2.1 Prior Research within the Simulated Robotic Soccer Domain

Robotic Soccer was first introduced as an interesting and promising domain for AI research at the Vision
Interface conference in June of 1992 [59]. The first working robotic soccer systems were also described
at that time [4, 85]. Since then, robotic soccer has proved to be a particularly good domain for studying
a wide variety of MAS issues and for evaluating different MAS techniques in a direct manner1. As a
result, the domain has been gaining in popularity in recent years, with several international competitions
taking place for real robots as well as for simulated soccer agents. Since the first competitions held in
1996 (Pre-RoboCup-96 and MiroSot-96), there has been an abundance of robotic soccer related research
and this has led to an immense body of literature on the subject. Although some research issues can only
be studied with the real robots, there are also many issues that can be investigated in simulation soccer.
Space obviously does not permit an exhaustive coverage of all the work in this area and we will therefore
present a survey of prior research that is most related to this thesis. This means that we will focus on
simulated robotic soccer teams which have been successful in past RoboCup competitions. An overview
of the main features of these teams and the research directions that they have explored will be presented
in this section. References for further reading will also be provided throughout and are summarized for
each team in Table 2.3 at the end of the chapter.

1Different teams that use different techniques can play games against each other.

9
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2.1.1 CMUnited

This team was created by Peter Stone at Carnegie Mellon University and has been extensively described in
his PhD thesis [90]. One of the main contributions of [90] is a multi-agent machine learning paradigm called
Layered Learning. This paradigm has been designed to enable agents to learn to work together towards a
common goal in an environment that is too complex to learn a direct mapping from sensors to actuators.
Layered Learning provides a bottom-up hierarchical approach to learning agent behaviors at various levels
of the hierarchy. In this framework, the learning at each level directly affects the learning at the next
higher level. A possible set of learned behavior levels that is presented in [90] is shown in Table 2.1. The
bottom layer contains low-level individual agent skills such as ball interception. The second layer contains
multi-agent behaviors at the level of one player interacting with another. An example is pass evaluation:
when an agent is in possession of the ball and has the option of passing to a particular teammate, he must
have an idea of whether this teammate will be able to successfully intercept the ball. When learning this
behavior, the agents can use the learned ball-interception skill as part of the multi-agent behavior. This
technique of incorporating one learned behavior as part of another is an important component of Layered
Learning. The third layer contains collaborative team behaviors such as pass selection: choosing to which
teammate the ball should be passed. Here the agents can use their learned pass-evaluation skill to create
the input space for learning the pass-selection behavior. Subsequently, the pass-selection behavior can be
used as part of the training for learning a strategic positioning behavior in the layer above. Finally, the
combined strategic-positioning and pass-selection behaviors can form the input representation for learning
adversarial behaviors, such as strategic adaptation against different types of opponents.

Layer Strategic level Behavior type Example

1 robot-ball individual ball interception
2 one-to-one player multi-agent pass evaluation
3 one-to-many player team pass selection
4 team formation team strategic positioning
5 team-to-opponent adversarial strategic adaptation

Table 2.1: Examples of different behavior levels in robotic soccer. From [90].

Layer Learned behavior Learning method

1 ball interception neural network
2 pass evaluation decision tree
3 pass selection TPOT-RL

Table 2.2: Learning methods used for layered learning implementation of CMUnited. From [90].

Early implementations of CMUnited actually contain only three learned subtasks corresponding to the
first three layers in Table 2.1. This is shown in Table 2.2. In the bottom layer the ball-interception
behavior has been learned using a neural network. The pass-evaluation behavior in the second layer has
been learned using the C4.5 decision tree algorithm (see [75]) and uses the learned ball-interception skill
from the layer below [93, 97]. Subsequently, the pass-selection behavior in the third layer has been learned
using a new multi-agent reinforcement learning method called TPOT-RL2 with the pass-evaluation skill

2Team-Partitioned Opaque-Transition Reinforcement Learning: this method can be used for maximizing long-term dis-
counted reward in multi-agent environments where the agents have only limited information about environmental state
transitions [103]. Although this is considered to be one of the main contributions of [90], it has never been used in any
version of CMUnited that actually took part in a competition. This is due to the fact that it requires more training against
an opponent than is possible in such situations.
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from the layer below as input. Although the subtasks in the layers above have not been implemented,
it is suggested that the strategic-positioning behavior can be learned using observational reinforcement
learning (see [1]) and that memory-based algorithms are suitable for learning to be strategically adaptive.

Additional important features of the CMUnited implementation include the following:

• The agents use a predictive memory that gives them a precise and accurate model of the situation
on the soccer field at each moment in time and that enables them to model the unseen parts of the
world in a probabilistic way [7].

• An advanced communication protocol has been implemented which enables efficient and reliable
inter-agent communication despite the limited communication facilities provided by the soccer server
[94]. This communication protocol is used to ensure team coordination.

• CMUnited uses a flexible teamwork structure in which agents have flexible roles and positions inside
dynamically changing formations [98].

• The agents use a sophisticated method for determining a strategic position on the field called SPAR3

[115]. When positioning themselves using SPAR, the agents use a multiple-objective function with
attraction and repulsion points. In this way they maximize the distance to other players and minimize
the distance to the ball and the opponent goal. SPAR is an extension of similar approaches which
use potential fields for positioning in highly dynamic multi-agent domains (see [55]).

• The agents make use of several pre-defined special-purpose plays (set-plays) which can be executed in
situations that occur repeatedly during a soccer game [99]. Examples of such situations are kick-offs,
goal-kicks, corner-kicks, etc.

• The agents of CMUnited use opponent behavior models to make their decisions more adaptive for
different kinds of opponents [92]. This feature has been added in 1999.

CMUnited has been the most successful soccer simulation team since the official RoboCup competitions
started. The team reached 4th place at RoboCup-97 and became world champion at RoboCup-98. At
RoboCup-99, CMUnited-984 reached 9th place and CMUnited-99 became 1st again. In the year 2000,
CMUnited-99 still managed 4th place, whereas the new team ATT-CMU-2000 finished 3rd.

2.1.2 Essex Wizards

An important characteristic of this team is that the implementation is multi-threaded [52]. This has the
advantage that agents can perform various computations while waiting for the completion of slow I/O
operations to and from the server. Furthermore, they have used a reinforcement learning technique called
Q-learning (see [41]) to learn a decision-making mechanism for the agents. Although the main objective of
the team is to score goals, the local goal of each individual agent is different due to the fact that they have
different roles in the team. By linking these local goals together, an efficient way of cooperation emerges
[51]. An additional feature of this team is that the agents possess several Position Selection Behaviors
(PSBs) for choosing an optimal position on the field in different situations [39]. An example of such a
behavior is the Marker PSB. This PSB selects an opponent to mark and chooses a strategic position based
on the position of this opponent and the position of the ball. In the same way each agent has a Tracker

3Strategic Positioning by Attraction and Repulsion.
4The winning team of last year always participates at the next championship with an unchanged version. This team then
serves as a benchmark to measure progress in the domain.
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PSB, an Offside Trap PSB, etc. The Essex Wizards finished 3rd at RoboCup-99. One year later, they
reached the same place at the EuRoboCup-2000 European Open and became 7th at RoboCup-2000.

2.1.3 FC Portugal

The creators of this team decided to base their low-level implementation almost entirely on that of
CMUnited-99 and to concentrate primarily on high-level issues. One of the main innovations of the
FC Portugal team is their positioning mechanism which is based on the distinction between strategic and
active situations [76]. In strategic situations the players use a method called Situation Based Strategic
Positioning (SBSP) to calculate a strategic position based on their player type, the current game situation
and the current tactic and formation. In active situations, the player positions are calculated using spe-
cific ball possession or ball recovery mechanisms. The FC Portugal players also use a mechanism called
Dynamic Positioning and Role Exchange [56], which enables them to exchange roles and positions inside
their current formation. They will only do this when the utility of the exchange is positive for the team.
Position exchange utilities are calculated using the distance from the player’s current position to his strate-
gic position and the importance of his position inside the formation in the current situation. Additional
features of this team include their intelligent communication mechanism (ADVCOM) and their strategic
looking mechanism (SLM) [56, 76]. Furthermore, the agents use a decision tree to choose an appropriate
action in a given situation [77]. The FC Portugal high-level strategy is easily configurable and therefore
flexible for different types of opponents. FC Portugal won at both EuRoboCup-2000 and RoboCup-2000.

2.1.4 Cyberoos

The implementation of this team is based on a hierarchy of logic-based agent architectures which captures
certain types of situated behavior5 and some basic classes of more complex tactical behavior [70, 73, 74].
The lowest level in the hierarchy is formed by the Clockwork Agent, which is able to distinguish only
between sensory states that have different time values and has no other sensors apart from a timer. Above
that is the Tropistic Agent which is characterized by a broader perception-action feedback. This type of
agent has different sensors, but reacts to its sensory input in a purely reactive fashion. At the next level
we then find the Hysteretic Agent. This type of agent is defined as a reactive agent that maintains an
internal state and uses this internal state together with its sensory states to activate its effectors. Above
this is the Task-Oriented Agent, which is capable of performing certain tactical elements in real time
by activating only a subset of its behavior instantiations and thus concentrating only on a specified task.
Finally, the highest level is formed by the Process-Oriented Agent, which is capable of consolidating related
tasks into coherent processes. The resulting framework has proved to be very expressive and captures
several desirable properties of both the situated automata [42] and subsumption-style architectures [9],
while retaining the rigour and clarity of the logic-based representation. An additional feature of this team
is that they use a sophisticated agent-environment synchronization method [13] that greatly enhances
the overall performance of the team. Cyberoos finished 3rd at the Pacific Rim Series at PRICAI-98 and
became 4th at EuRoboCup-2000. At RoboCup-2000 the team reached 9th place.

2.1.5 Karlsruhe Brainstormers

The main research issue that is addressed by this team is the development and application of reinforcement
learning techniques in complex domains. Their long-term goal is to develop a learning system which can be

5A situated agent reacts to changes in the environment instead of relying on abstract representations and inferential reasoning.
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given the goal ‘win the match’ and that can then learn to generate the appropriate behavior. However, the
complexity of the robotic soccer domain (huge state space, many possible actions and strategies, partial
observability of state information, etc.) makes the use of traditional reinforcement learning methods
very difficult. The team tries to tackle this complexity by using sequences of basic commands instead of
separate ones in order to reduce the number of actions and decisions available to the agent [79]. They
call such sequences ‘moves’ and use Real-Time Dynamic Programming methods (see [5]) to learn these
moves by incrementally approximating an optimal value function using a feedforward neural network [78].
Examples of moves which have been successfully learned are the following:

• Kick: kick the ball in a specified direction with the desired speed.

• Intercept-ball: intercept a moving ball taking the stochastic nature of the domain into account.

• Dribble: run with the ball without losing control of it.

• Positioning: move to a particular position while avoiding collisions with other players.

• Stop-ball: stop and control a high-speed ball.

• Hold-ball: keep the ball away from an opponent.

On a tactical level, the agents now have to learn which of the available moves to execute. The dif-
ficulty with this decision is that in general a complex sequence of moves has to be selected, since a
single move is not likely to achieve the final goal. The current version of the Karlsruhe Brainstormers
team uses an intermediate step to a reinforcement learning solution to this problem. They call this the
Priority−Probability−Quality (PPQ) approach [80]. In this approach, each possible move is judged by
both its usefulness (quality) and probability of success. The quality of a move is given by a priority
ordering and the probability of success is learned by a simple trial-and-error training procedure. With
this approach Karlsruhe Brainstormers has been very successful in recent competitions. The team was
runner-up behind FC Portugal at both EuRoboCup-2000 and RoboCup-2000.

2.1.6 Magma Freiburg

‘Magma’ stands for motivation action control and goal management of agents. The action control mech-
anism of the Magma Freiburg team is based on extended behavior networks [25]. These extend original
behavior networks (see [35, 60]) to exploit information from continuous domains and to allow the concur-
rent execution of behaviors. Extended behavior networks consist of the following components [24, 26]:

• Goals. These are represented by a static importance value of the goal, a goal condition describing the
situation in which the goal is satisfied and a relevance condition whose value represents the dynamic
relevance of the goal. The more the current state diverges from a goal state, the more relevant (i.e.
urgent) this goal becomes.

• Competence modules. These consist of a list of preconditions that have to be satisfied for the module
to be executable, the behavior which is executed once the module is selected for execution, a list of
effects expected after the behavior execution and an activation value for the module.

• Perceptions. In extended behavior networks these are real-valued propositions in order to improve
the quality of perception within continuous domains.

• Resource nodes. These are used to coordinate the selection of multiple concurrent behaviors.
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To achieve goal-directed behavior, a competence module receives activation from a goal if it has an
effect that satisfies the goal. Competence modules can also be inhibited by a goal if the module has
an effect preventing the goal from being satisfied. A high activation value of a module increases the
probability that the corresponding behavior will be executed. Apart from the additional benefits, extended
behavior networks also maintain the advantages of original behavior networks such as reactivity, planning
capabilities, consideration of multiple goals and cheap computation. The approach has been successfully
implemented in the Magma Freiburg soccer team, which was runner-up at RoboCup-99 and reached 5th
place at RoboCup-2000.

2.1.7 AT Humboldt

This team has a very strong low-level implementation [10]. Their agent architecture is based on the BDI
(Belief-Desire-Intention) approach [11]. This means that each agent consists of four different components:

• The belief component models the belief of the agent about the state of the environment based on
sensory information.

• The desire component evaluates possible desires according to the beliefs.

• The intention component specifies the best plan according to a committed desire.

• The execution component receives the chosen action and is responsible for the synchronization with
the soccer server.

In situations where agents do not have enough information to induce rules, they use Case Based Reasoning
[57] to learn from former experiences. This requires efficient case memories to enable a quick retrieval of old
cases. AT Humboldt won at RoboCup-97, was runner-up at RoboCup-98 and became 7th at RoboCup-99.

2.1.8 Windmill Wanderers

This is the old team from the University of Amsterdam that was created by the late Emiel Corten. It uses
a three-layer agent architecture [18]. The Basic Layer provides access to the functionality offered by the
soccer server and hides the server as much as possible from the other layers. Subsystems exist for receiving
and parsing information from the server and for sending actions to the server. This layer also contains a
visual memory. The Skills Layer then uses the functionality offered by the Basic Layer to define several
advanced agent skills. A distinction is made between essential tasks (e.g. intercept), elementary tasks (e.g.
search ball) and feature extractors. A feature in this respect can be seen as a derived piece of information
that is important when deciding what to do next or how to perform a certain action. Examples are ‘team
mate free’ or ‘closest to ball’. Features are calculated using the current information available in the visual
memory and internal state of the agent. The highest layer in the architecture is the Control Layer which
chooses the optimal action from the Skills Layer based on the current field situation. A strong aspect of
the Windmill Wanderers team is that they use an effective zone strategy for positioning players on the
field [17]. In order to improve the local positioning of players inside their zone an attraction-repulsion
algorithm is used in which the attractive and repulsive forces are supplied directly by other players and
indirectly by feature extractors indicating favorable locations. Furthermore, a generic learning algorithm
has been implemented to find optimal parameter values for several skills such as shooting and dribbling.
The Windmill Wanderers reached 3rd place at RoboCup-98 and finished 9th at RoboCup-996.

6In this competition the team was called UvA-Team
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2.1.9 Mainz Rolling Brains

This team uses a three-layer agent architecture [112]. At the bottom, the Technical Layer communicates
with the server and as such it provides an abstract interface to the server for the other layers. In the
middle, the Transformation Layer contains all the skills and tools that a player might use. Each player has
the possibility to choose between two skill levels. Low-level skills correspond with basic player commands,
such as ‘turn’ and ‘kick’, whereas high-level skills consist of sequences of such commands (e.g. ‘intercept’
or ‘dribble’). The highest layer is the Decision Layer which can be seen as the brain of the player. The
Mainz Rolling Brains use a hierarchical rule tree for player control. Each rule in this tree consists of a
condition for firing the rule and an action7 which is to be performed when the condition is satisfied. A
significant feature of this team is that the rule trees are constructed using several AI-techniques such as
Q-Learning and Genetic Algorithms [113]. Different rule trees are created for different player types and
separate subtrees exist for several standard situations. The players also use models of opponent behavior
constructed during a match in order to be adaptive to different strategies. The Mainz Rolling Brains
finished 5th at RoboCup-98 and reached the same place at RoboCup-99.

2.1.10 YowAI

This team has a high-quality low-level implementation. The agents use an effective synchronization scheme
and have an accurate world model [106]. Furthermore, they possess very strong low-level individual skills
and use a sophisticated stamina management system that cleverly controls the running behavior of the
agents so that none of them actually runs too much compared with the others [107]. A significant feature
of this team is that they do not use any explicit cooperation between their agents. Despite this, they
have performed well at international competitions and this has led them to conclude that individual low-
level skills and world model accuracy have prior importance to cooperation. Their future research goal
is to investigate how cooperation can be realized without communicating detailed numerical or symbolic
information such as global coordinates or elaborate plan sequences. It is their intention to demonstrate
that powerful cooperation can be achieved by man-like communication in the form of short utterances.
The YowAI team became 7th at RoboCup-99. In the year 2000, the team won the Japan Open and
reached 5th place at RoboCup-2000.

2.1.11 Other Teams: Footux, RoboLog, Gemini

During our literature study we have also investigated a small number of other teams, some of which have
been less successful in past RoboCup competitions. Here we shortly mention three of these teams that
exhibited significant features.

• Footux. This team uses a hybrid agent architecture which combines the benefits of the more
traditional horizontal and vertical architectures [34]. In a vertical architecture, a higher layer is
called when it is needed by the layer below and it uses the functionality offered by this lower layer
to perform its task. In a horizontal architecture however, the layers are more independent and all of
them are active at the same time. The Footux architecture combines the benefits of both approaches
into a hybrid architecture in which the perception flow is vertical and the action flow is horizontal.

• RoboLog Koblenz. This team has copied the low-level skills of CMUnited-99 and uses multi-
agent scripts implemented in the programming language Prolog to describe multi-agent behavior

7In a terminal rule the action is an elementary action; in a meta-rule the action consists of a set of subrules.
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[63]. Logic is used as a control language for deciding how an agent should behave in situations where
there is possibly more than one choice. The agents use logical rules in decision trees to make these
choices. In order to specify the more procedural aspects of agent behavior, statecharts are adopted
[64]. Robolog Koblenz became 5th at EuRoboCup-2000.

• Gemini. A significant feature of this team is that cooperation between agents is achieved without
using inter-agent communication [65]. Reinforcement learning is used to select the best strategy
against an opponent based on statistical information. This team became 7th at RoboCup-98, 13th
at RoboCup-99 and finished 9th at RoboCup-2000.

2.2 Reference Guide

We conclude this chapter by presenting an overview of references about each team that has been discussed
in the previous section. Along with the references we also summarize the significant results of these teams
in international competitions (top-10 finishes only). It is important to realize that the list is not exhaustive
and only contains references and results up to and including the year 2000.

Team References Roll of honour

CMUnited [7, 90, 92, 93, 94, 95, 96, 97] 4th WC97, 1st WC98,
[98, 99, 100, 102, 103, 104, 115] 1st+9th WC99, 3rd+4th WC00

Essex Wizards [36, 37, 39, 50, 51, 52, 53] 3rd WC99, 3rd EC00, 7th WC00
FC Portugal [56, 76, 77] 1st EC00, 1st WC00
Cyberoos [13, 69, 70, 71, 72, 73, 74] 3rd PR98, 4th EC00, 9th WC00
Karlsruhe Brainstormers [79, 80] 2nd EC00, 2nd WC00
Magma Freiburg [24, 25, 26] 2nd WC99, 5th WC00
AT Humboldt [3, 10, 11] 1st WC97, 2nd WC98, 7th WC99
Windmill Wanderers [17, 18] 3rd WC98, 9th WC99
Mainz Roling Brains [111, 112, 113] 5th WC98, 5th WC99
YowAI [106, 107] 7th WC99, 1st JO00, 5th WC00
Footux [34] -
RoboLog Koblenz [63, 64, 89] 5th EC00
Gemini [65] 7th WC98, 9th WC00

Table 2.3: References for further reading about several successful soccer simulation teams. Significant
competition results of these teams are shown on the right. Here ‘WC’ denotes World Championship, ‘EC’
denotes European Championship, ‘PR’ denotes Pacific Rim Series and ‘JO’ denotes Japan Open.



Chapter 3

The RoboCup Soccer Server

The RoboCup Soccer Server is a soccer simulation system which enables teams of autonomous agents to
play a match of soccer against each other. The system was originally developed in 1993 by Dr. Itsuki
Noda (ETL, Japan). In recent years it has been used as a basis for several international competitions and
research challenges. The soccer server provides a realistic domain in the sense that it contains many real
world complexities such as sensor and actuator noise and limited perception and stamina for each agent.
One of its purposes is the evaluation of multi-agent systems, in which the communication between agents
is restricted. In this chapter we give a detailed description of version 7.x of the simulator. The information
presented is largely based on [32] and partly the result of several experiments that we have performed when
studying the behavior of the soccer server. We will not address every aspect of the simulation as is done in
[32], but only discuss the concepts and parameters which are important for understanding the remainder
of this thesis. The chapter is organized as follows. In Section 3.1 we present a general overview of the
main components of the simulator. The sensor, movement and action models are discussed in Sections
3.2−3.4. Section 3.5 is devoted to the concept of heterogeneous players followed by an explanation of the
referee model in Section 3.6. The use of the coach is shortly discussed in Section 3.7. The chapter is
concluded in Section 3.8 which contains a summary of the most important features of the simulation.

3.1 Overview of the Simulator

The RoboCup simulator consists of three main components:

• the soccer server

• the soccer monitor

• the logplayer

A simulation soccer match is carried out in client-server style. The soccer server provides a domain (a
virtual soccer field), simulates all the movements of objects in this domain and controls a soccer game
according to several rules. The characteristics of the server are specified by a set of server parameters
which will be discussed throughout this chapter. These parameters define, for example, the amount of
noise that is added to visual perceptions and the maximum speed of a player. Players are controlled by

17
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client programs which act as their brain and which connect to the server through a specified port (6000).
Each client program can control only a single player. All communication between the server and the
clients is done via UDP/IP sockets. Using these sockets, client programs send requests to the server to
perform a desired action (e.g. ‘kick’). When the server receives such a message it handles the request
and updates the environment accordingly. After fixed intervals the server also sends sensory information
about the state of the world to each player. Although direct communication between the clients is not
permitted, it is allowed for clients to communicate with each other indirectly via the server using say
and hear protocols which restrict the communication. When a match is to be played, two teams each
consisting of 11 separate clients make a connection with the server. The objective of each team is to direct
the ball into the opponent goal, while preventing the ball from entering their own goal.

It is important to realize that the server is a real-time system working with discrete time intervals (cycles).
Each cycle has a specified duration defined by the server parameter simulator step1 which in the current
server version has a value of 100ms. During this period clients can send requests for player actions to the
server and the server then collects these requests. It is only at the end of a cycle however, that the server
executes the actions and updates the state of the world. The server thus uses a discrete action model.
When a client sends multiple action requests to the server during a single cycle, the server randomly
chooses one for execution and discards the others. It is thus important that each client sends at most one
action request during a cycle. On the other hand, sending no request during a given cycle will mean that
the agent misses an opportunity to act and remains idle. This is undesirable since in real-time adversarial
domains this may lead to the opponents gaining an advantage. Therefore, slow decision making leading
to missing action opportunities has a major impact on the performance of the team.

A complex feature of the soccer server is that sensing and acting are asynchronous. In version 7.x of the
simulator, clients can send action requests to the server once every 100ms, but they only receive visual
information at 150ms intervals2. Since it is crucial for each agent to perform an action whenever he has
the opportunity, this means that in some cycles agents must act without receiving new visual information.
This feature is challenging for the agents since it requires them to make a prediction about the current
world state based on past perceptions. Asynchronous sensing and acting thus force agents to find an
optimal balance between the need to obtain information about the world and the need to act as often as
possible. Furthermore, actions that need to be executed in a given cycle must arrive at the server during
the right interval. It is therefore important to have a good synchronization method for sending actions to
the server, since this can greatly enhance the overall performance of the team.

The simulator also includes a visualization tool called soccer monitor, which allows people to see what
is happening within the server during a game. The soccer monitor displays the virtual field from the
soccer server on a computer screen using the X window system. The soccer server and soccer monitor are
connected via UDP/IP. As soon as the server is connected to the monitor it will send information to the
monitor each cycle concerning the current state of the world. Figure 3.1 shows the soccer monitor display.
The information shown on the monitor includes the team names, the score, the current play mode, the
current time (i.e. the number of cycles which have passed), the field boundaries and the positions of all
the players and the ball. Note that each player is drawn as a two-halved circle containing a number. The
light side represents the front part of the player’s body, whereas the dark side is his back. The black line
which is visible in the light area represents the player’s neck angle and defines the direction of his vision.
The number denotes the uniform number belonging to that particular player. The black bars which are
visible on the left and right represent the goals. Note that the monitor also provides a visual interface to
the server in the form of two buttons labeled Kick Off and Quit. When both teams have connected to the
server to start a match, the Kick Off button allows a human referee to start the game. The Quit button
can be used to break off the simulation, disconnecting all the clients and terminating the server.

1Throughout this thesis the names of server parameters are shown in typewriter font.
2These are the default values for the server parameters simulator step and send step.
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Figure 3.1: The soccer monitor display. Note that the soccer field and all objects on it are two-
dimensional. The concept of ‘height’ thus plays no role in the simulation. The field has dimensions
pitch length × pitch width with goals of width goal width. In the current server version this means
that the size of the field is 105m×68m and that the width of the goals is 14.02m. The goals are doubled
in size as compared to ordinary soccer, since scoring in two dimensions is more difficult than in three.

To enforce the rules of the game, the simulator includes a referee module which controls the match.
This artificial referee can detect trivial situations such as when a team scores or when the ball goes out
of bounds. The referee also enforces the offside rule, controls the play mode (kick off, corner kick,
etc.) and suspends the match when the first or second half finishes. Several situations however, such
as ‘obstruction’ or ‘ungentlemanly play’, are hard to detect since the intentions of players cannot be
mechanically deduced. Therefore, a human referee is used to judge this kind of fouls. The human referee
can give free kicks to either team or drop the ball at a chosen spot on the field using a special server
interface built into the monitor. In order to enhance their performance, teams can also make use of a
coach client. The coach can be used, for example, to analyze the strengths and weaknesses of the enemy
team and to give strategic advice by communicating with the players.

The third main component of the simulator is the logplayer. This is a tool which can be thought of as a
video recorder and which can be used to replay games. During a game it is possible to run the server using
an option which causes it to make a recording of the current match. This means that the server stores all
the match data in a logfile. The logplayer combined with the soccer monitor can then be used to replay
the game (i.e. the logfile) as often as needed. This can be useful for analyzing a team and for debugging
clients. To facilitate fast debugging the logplayer is equipped with stop, fast forward, and rewind buttons
just like a real video recorder. In addition, the logplayer makes it possible to jump to a particular cycle
in a game. This can be useful if you only want to see a particular game situation such as a goal.
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Figure 3.2: The positions and names of all the landmarks in the simulation. Taken from [32].

3.2 Sensor Models

A RoboCup agent has three different types of sensors: a visual sensor, a body sensor and an aural sensor.
Together these sensors give the agent a reasonably good picture of its environment. In this section we
discuss the characteristics of each of these three sensor types.

3.2.1 Visual Sensor Model

The visual sensor detects visual information about the field such as the distance and direction to objects
in the player’s current field of view. This information is automatically sent to the player every send step

ms. The visual sensor also works as a proximity sensor by ‘seeing’ objects that are close, but behind the
player. It is important to realize that all visual information given is relative from the player’s perspective.
As a result a player cannot directly see his own global position or the global positions of other players and
the ball. The relative information must be converted into global information however, since old relative
information is of no use once the player himself has moved to another position on the field. The agents
thus need a way to derive global information from a visual message. To this end, several landmarks (flags,
lines and goals) have been placed on and around the field. This is illustrated in Figure 3.2 which shows
the positions an names of all the landmarks in the simulation. By combining the known global positions
of these landmarks with their relative positions (which are included in a visual message) an agent can
determine his own global position and the global positions of the ball and other players.

A player can directly control the frequency, range and quality of the visual information which is sent to
him. The frequency with which visual information arrives from the server is determined by the server
parameter send step, which represents the basic time step between visual messages and currently stands
at 150ms. However, a player can choose to trade off the frequency of visual messages against the quality
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of the given information and the width of his view cone. He can do this by adjusting his ViewQuality,
which can be set to either high (default) or low , and ViewWidth, which can be set to either narrow ,
normal (default) or wide. For example, setting ViewQuality to low means that the player will only
receive direction information to objects and no distances. However, he will receive this information twice
as often. The frequency with which a player receives visual messages can be calculated as follows:

view frequency = send step · view width factor · view quality factor (3.1)

where view width factor is 0.5 iff ViewWidth is narrow , 1 iff ViewWidth is normal, and 2 iff
ViewWidth is wide; view quality factor is 1 iff ViewQuality is high and 0.5 iff ViewQuality is low .
The field of view of a player is determined by the server parameter visible angle, which represents the
number of degrees of a player’s normal view cone, and by the player parameter ViewWidth (see above). In
the current server version the default values for these parameters are 90 degrees and normal respectively.
A player’s view angle is calculated according to the following equation:

view angle = visible angle · view width factor (3.2)

where view width factor depends on ViewWidth as described above. Note that a player can also ‘see’
objects outside his view cone but within visible distance (currently 3.0) meters away from him (‘feel’
might be more appropriate in this case). However, he will then only receive information about the type
of the object (ball, player, goal or flag) and not about its name (i.e. which flag, which player, etc.).

Visual information arrives from the server in the following format:

(see Time ObjInfo+)

where

Time ::= simulation cycle of the soccer server
ObjInfo ::= (ObjName Distance Direction [DistChange DirChange [BodyDir NeckDir]])

| (ObjName Direction)
ObjName ::= (p [“Teamname” [UniformNr [goalie]]])

| (b)
| (g [l|r])
| (f c)
| (f [l|c|r] [t|b])
| (f p [l|r] [t|c|b])
| (f g [l|r] [t|b])
| (f [l|r|t|b] 0)
| (f [t|b] [l|r] [10|20|30|40|50])
| (f [l|r] [t|b] [10|20|30])
| (l [l|r|t|b])
| (B)
| (F)
| (G)
| (P)

Distance ::= positive real number
Direction ::= −180 ∼180 degrees

DistChange ::= real number
DirChange ::= real number
BodyDir ::= −180 ∼180 degrees
NeckDir ::= −180 ∼180 degrees

Teamname ::= string
UniformNr ::= 1 ∼11
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The object information is provided for all visible objects, i.e. for all the objects in the player’s view
cone. The amount of information given can be different for each object depending on the type of and the
distance to the object and on the quality of the visual information determined by the player parameter
ViewQuality. When ViewQuality is set to low , the only information given about an object is the name
of the object and the direction to the object. When ViewQuality is high more information is provided
depending on the type of the object and the distance to it. Let dist be the distance to the object in
question. Then the situation can be summarized as follows:

• For landmarks (i.e. flags, lines and goals) the information given always consists of the name of the
landmark in question, the distance to this landmark and the direction to this landmark. Note that
in the case of a line, Distance is the distance to the point on the line where the bisector of the
player’s view cone crosses the line and Direction is the angle between the line and this bisector.

• For players p the amount of information given depends on dist in the following way:

– If dist ≤ unum far length, then both the uniform number of the player and the team name of
the team he belongs to are visible. Furthermore, values for Distance, Direction, DistChange,
DirChange, BodyDir and NeckDir are also included in the visual message.

– If unum far length < dist ≤ unum too far length = team far length, then the team name
is always visible and values for Distance and Direction will always be included. However, the
probability that the player’s uniform number is visible decreases linearly from 1 to 0 as dist
increases. The same holds for the probability that values are given for DistChange, DirChange,
BodyDir and NeckDir.

– If dist ≥ unum too far length = team far length, then values for DistChange, DirChange,
BodyDir and NeckDir are never included anymore, whereas information about Distance and
Direction will always be given.

– If unum too far length = team far length < dist < team too far length, then the uniform
number is not visible and the probability that the team name is visible decreases linearly from 1
to 0 as dist increases. When dist exceeds team too far length the team name is never visible
anymore and the player is simply identified as an anonymous player.

• For the ball b the situation is similar:

– If dist ≤ unum far length, then values for Distance, Direction, DistChange and DirChange
are included in the visual message.

– If unum far length < dist ≤ unum too far length = team far length, then values for Dis-
tance and Direction will always be included. However, the probability that DistChange and
DirChange are given decreases linearly from 1 to 0 as dist increases.

– If dist ≥ unum too far length = team far length, then values for DistChange and DirChange
are never included anymore, whereas the Distance and Direction will always be given.

In version 7 of the soccer server, the values for unum far length, unum too far length, team far length

and team too far length are 20, 40, 40 and 60 meters respectively. Figure 3.3 (taken from [90]) shows
the visual range of a player and provides an example of how the amount of information given about an
object decreases as the distance to this object increases.

Object names always contain a letter indicating the type of the object: p for players, g for goals, b for
the ball, f for flags and l for lines. When multiple objects of the same type exist, this letter is followed
by a specifier which indicates which object of that type it concerns. We have already seen that in case of
a player, the p is possibly followed by the team name of the player and his uniform number depending
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Figure 3.3: The visual range of a player. The amount of visual information about an object decreases as
the distance to this object increases. In this example the sensing player is shown as a two-halved circle of
which the light side is his front. The black circles represent other players. Only objects within the sensing
player’s view angle and those within visible distance of the sensing player can be seen. Players b and
g are thus not visible, whereas all the others are (a can be ‘felt’). Since player f is directly in front of the
sensing player the reported angle to this player will be 0◦; player e would be reported as being at roughly
−40◦, while player d is roughly at 20◦. Player c will be identified by both team name and uniform number
and his Distance, Direction, DistChange, DirChange, BodyDir and NeckDir will also be reported. Player
d will be identified by team name and the Distance and Direction to this player will be given; furthermore
there is about a 50% chance that his uniform number and values for DistChange, DirChange, BodyDir
and NeckDir will be reported. For player e only the Distance and Direction will be reported for sure with
about a 25% chance of getting the team name as well. Player f will simply be identified as an anonymous
player for which only the Distance and Direction are given. Taken from [90].

on the distance to the player. When the player is a goalkeeper this is specified by the optional argument
goalie. The ball is simply identified as (b). The naming convention for landmarks is motivated by their
position on the field. The object (f c), for example, is a virtual flag at the center of the field and (f p r
t) is a virtual flag at the top corner of the penalty area on the right hand side. Note that several types of
flags are located 5 meters outside the playing area. The (f b l 40) flag, for example, is located 5 meters
below the bottom side line and 40 meters to the left of the center line. In the same way (f r t 20) is
located 5 meters to the right of the right side line and 20 meters above the center of the right goal. Refer
back to Figure 3.2 for a good overall picture of the positions and names of all the landmarks on the field.

Values for Distance, Direction, DistChange, DirChange, BodyDir and NeckDir are calculated as follows:

prx = pxt − pxo (3.3)

pry = pyt − pyo (3.4)

vrx = vxt − vxo (3.5)

vry = vyt − vyo (3.6)

Distance =
√

p2
rx + p2

ry (3.7)

Direction = arctan (pry/prx)− ao (3.8)

erx = prx/Distance (3.9)
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ery = pry/Distance (3.10)

DistChange = (vrx · erx) + (vry · ery) (3.11)

DirChange = [(−(vrx · ery) + (vry · erx))/Distance] · (180/π) (3.12)

BodyDir = body dir abs − a0 (3.13)

NeckDir = neck dir abs − a0 (3.14)

where (pxt, pyt) and (vxt, vyt) respectively denote the global position and global velocity of the target
object and (pxo, pyo) and (vxo, vyo) the global position and global velocity of the sensing player; a0 is the
global facing direction of the sensing player. Furthermore, (prx, pry) and (vrx, vry) are respectively the
relative position and relative velocity of the target object and (erx, ery) denotes the unit vector in the
direction of the relative position. Values for BodyDir and NeckDir will only be included if the target
object is a player. BodyDir is the body direction of the observed player relative to the neck direction of
the observing player. If the body of the observed player is turned in the same direction as the neck of the
observing player, the value for BodyDir would thus be 0. In the same way NeckDir is the neck direction
of the observed player relative to the neck direction of the observing player.

One of the real-world complexities contained in the soccer server is that the precision of visual information
decreases as the distance to an object increases. Noise is introduced into the visual sensor data by
quantizing the values sent by the server. Distances to objects, for example, are quantized as follows:

Q Distance = Quantize(exp(Quantize(ln(Distance),StepValue)), 0.1) (3.15)

Here Distance and Q Distance are the exact and quantized distance values respectively and StepValue is
a parameter denoting the quantize step. For players and the ball this parameter is equal to the server
parameter quantize step and for landmarks the server parameter quantize step l is used. Furthermore,

Quantize(V,Q) = rint(V/Q) ·Q (3.16)

where ‘rint’ denotes a function which rounds a value to the nearest integer. The amount of noise thus
increases as the distance to the object increases. For example, when an object is roughly reported at
distance 100.0 the maximum noise is about 10.0, whereas when the reported distance is roughly 10.0 the
noise can be about 1.0. Values for DistChange, Direction and DirChange are quantized as follows:

Q DistChange = Q Distance ·Quantize(DistChange/Distance, 0.02) (3.17)

Q Direction = Quantize(Direction, 1.0) (3.18)

Q DirChange = Quantize(DirChange, 0.1) (3.19)

Here the quantize function is as shown in (3.16) and Q DistChange, Q Direction and Q DirChange denote
the quantized values for the distance change, direction and direction change respectively. Table 3.1 lists
the server parameters which are important for the visual sensor model together with their default values.

Parameter Value Parameter Value

send step 150 team far length 40.0
visible angle 90.0 team too far length 60.0
visible distance 3.0 quantize step 0.1
unum far length 20.0 quantize step l 0.01
unum too far length 40.0

Table 3.1: Server parameters which are important for the visual sensor model with their default values.
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3.2.2 Aural Sensor Model

The aural sensor detects spoken messages which are sent when a player or a coach issues a say command.
Calls from the referee are also received as aural messages (possible referee messages are discussed later in
Section 3.6). The soccer server communication paradigm models a crowded, low-bandwidth environment
in which the agents from both teams use a single, unreliable communication channel [90]. Spoken messages
are immediately broadcast to all nearby players from both teams without perceptual delay. Aural sensor
messages arrive from the server in the following format:

(hear Time Sender “Message”)

where

• Time indicates the current simulation cycle of the soccer server.

• Sender can be one of the following:

– online coach left or online coach right when the sender is one of the online coaches.

– referee when the sender is the referee.

– self when you are the sender yourself.

– the relative direction to the sender if the sender is another player.

• Message is a string representing the contents of the message; the length of the string is limited to
say msg size (currently 512) bytes.

Note that there is no information about which player has sent the message or about the distance to the
sender. Furthermore, the capacity of the aural sensor is limited. The server parameter hear max represents
the maximum hearing capacity of a player. Each time when a player hears a message his hearing capacity
is decreased by hear decay. Every cycle the hearing capacity of a player is then increased by hear inc

until it reaches hear max. Since the hearing capacity of a player cannot become negative, a player can only
hear a message if his hearing capacity is at least hear decay. With the current server parameter values
this means that a player can hear at most one message every second simulation cycle. When multiple
messages arrive during this time, the first one is chosen according to their order of arrival and the rest
are discarded3. The communication is thus extremely unreliable. However, messages from the referee are
treated as privileged and are always transmitted to all the players. Since all 22 players on the field use
the same communication channel, it would be possible to make the communication of the opponent team
useless by overloading the channel with messages of your own. To avoid this, the players have separate
hearing capacities for each team. This means that a player can hear a single message from each team
every two simulation cycles. Besides this, players also have to deal with the fact that their communication
range is limited. A spoken message is transmitted only to players within audio cut dist meters from the
speaker. Messages from the referee however can be heard by all the players. The server parameters which
are important for the aural sensor model are listed in Table 3.2 together with their default values.

Parameter Value Parameter Value

say msg size 512 hear decay 2
hear max 2 audio cut dist 50.0
hear inc 1

Table 3.2: Server parameters which are important for the aural sensor model with their default values.

3This does not hold for your own messages, i.e. a player can say a message and hear one from another player simultaneously.
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3.2.3 Body Sensor Model

The body sensor reports physical information about the player, such as its stamina, speed and neck angle.
This information is automatically sent to the player every sense body step (in the current server version
100) ms. Body information arrives from the server in the following basic format:

(sense body Time
(view mode ViewQuality ViewWidth)
(stamina Stamina Effort)
(speed AmountOfSpeed DirectionOfSpeed)
(neck angle NeckAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))

where

• Time indicates the current simulation cycle of the soccer server.

• ViewQuality is either high or low and denotes the quality of the visual information received.

• ViewWidth is either narrow , normal or wide and denotes the width of the player’s view cone.

• Stamina is a positive real number representing the player’s current stamina.

• Effort is a positive real number representing the player’s current effort capacity.

• AmountOfSpeed represents the player’s current speed. Noise is incorporated into this value by
quantizing (see Equation 3.16) the speed as follows: AmountOfSpeed = Quantize(Speed,0.01).

• DirectionOfSpeed represents the direction of the player’s current speed. Noise is incorporated into
this value by quantizing the direction according to Equation 3.18.

• NeckAngle represents the direction of the player’s neck relative to his body (quantized as in (3.18)).

• the Count variables are counters for the total number of commands of a certain type which have been
executed by the server; e.g. when KickCount = 45 this means that the player has so far executed
45 kick commands. These counters can be used to check whether a command sent in the previous
cycle has been performed (if so then the corresponding counter value has been incremented).

The parameters mentioned here will be described more extensively in the sections where they are actually
used. Server parameters that affect the body sensor are listed in Table 3.3 along with their default values.

Parameter Value

sense body step 100

Table 3.3: Server parameters which are important for the body sensor model with their default values.
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3.3 Movement Model

In the soccer server object movement is simulated stepwise in a simple way: the velocity of an object
is added to its position, while the velocity decays by a certain rate and increases by the acceleration of
the object resulting from certain client commands. During each simulation cycle the movement of mobile
objects (i.e. players and the ball) is calculated according to the following equations:

(ut+1
x , ut+1

y ) = (vtx, v
t
y) + (atx, a

t
y) + (r̃1, r̃2) + (w1, w2): accelerate (3.20)

(pt+1
x , pt+1

y ) = (ptx, p
t
y) + (ut+1

x , ut+1
y ): move (3.21)

(vt+1
x , vt+1

y ) = Decay × (ut+1
x , ut+1

y ): decay speed (3.22)

(at+1
x , at+1

y ) = (0, 0): reset acceleration (3.23)

Here (ptx, p
t
y), (v

t
x, v

t
y), (a

t
x, a

t
y) respectively denote the position, velocity and acceleration of the object

in cycle t with (r̃1, r̃2) and (w1, w2) a noise vector and a wind vector which are added to the object
movement. Decay is a parameter representing the velocity decay rate of the object; for players this is
equal to the server parameter player decay and for the ball the server parameter ball decay is used.
The acceleration of an object results from certain client commands which are sent to the server. The
acceleration of a player, for example, is a result of the player dashing. In the same way, the acceleration
of the ball results from a player kicking it. These and other action commands will be described in Section
3.4. If two objects overlap at the end of a cycle, i.e. two objects collide with each other after a movement,
then these objects are moved back into the direction where they came from until they do not overlap
anymore; after this their velocities are multiplied by −0.1. Note that it is thus possible for the ball to go
through a player as long as the ball and the player never overlap at the end of a simulation cycle.

In order to reflect unexpected movements of objects in the real world, the soccer server adds uniformly
distributed random noise to the movement of all objects. The noise vector in Equation 3.20 contains
two random numbers r̃i as its elements which are taken from a uniform distribution over the range
[−rmax, rmax]. The value of rmax depends on the speed of the object and is calculated as follows:

rmax = Rand · ‖(vtx, vty) + (atx, a
t
y)‖ (3.24)

Here Rand is a parameter representing the random error in the object movement; for players this is equal
to the server parameter player rand and for the ball the server parameter ball rand is used.

Besides this, the soccer server also models a wind vector (w1, w2) as a more natural form of noise. The
wind in the simulation is represented by the vector (wx, wy) = π(wind force, wind dir) where π is a
method that converts polar coordinates to Cartesian coordinates. The actual vector (w1, w2) which is
added to the movement of an object as a result of this wind depends on the weight of the object and is
calculated according to the following formula:

(w1, w2) = ‖(vtx, vty) + (atx, a
t
y) + (r̃1, r̃2)‖ ·

(wx + ẽ1, wy + ẽ2)

Weight · 10000 (3.25)

where ẽi is a random number taken from a uniform distribution over the range [−wind rand, wind rand].
Furthermore, Weight is a parameter representing the weight of the object; for players this is equal to the
server parameter player weight and for the ball it equals ball weight. It must be noted that in the
current server version (7.x) the values for all wind-related parameters have been set to 0.0, i.e. no wind
is used. Table 3.4 shows the server parameters which are important for the movement model of soccer
server together with their default values.
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Parameter Value Parameter Value

ball decay 0.94 player weight 60.0
ball rand 0.05 wind force 0.0
ball weight 0.2 wind dir 0.0
player decay 0.4 wind rand 0.0
player rand 0.1

Table 3.4: Server parameters which are important for the movement model with their default values.

3.4 Action Models

When a player client wants to perform a certain action he sends an action command to the server,
thereby requesting the server to execute the action that he desires. A player can perform the following
actions: kick, dash, turn, say, turn neck, catch, move, change view, sense body and score. In
soccer server version 7.x, the sense body command has become obsolete, since body information is
automatically provided every cycle by the body sensor. In earlier versions this was not the case and a
player could specifically ask the server for his physical status using this command. When a sense body
command is given in a certain cycle, the server will return the same body information reported by the
body sensor in that cycle (see Section 3.2.3 for the format of this message). When a player issues a score
command, the server returns a message of the form:

(score Time OurScore TheirScore)

where Time indicates the current simulation cycle, OurScore is an integer denoting the number of goals
scored by the player’s own team and TheirScore is an integer denoting the number of goals scored by
the opponent team. The other actions listed above all change the state of the world in some way. In the
remainder of this section we will separately discuss the characteristics of each of these actions.

3.4.1 Kick Model

When a player wants to kick the ball, he must send a kick command to the server. This command takes
two parameters: the Power of the kick and the Angle towards which the ball is kicked relative to the body
of the kicking player. The kick power determines the amount of acceleration given to the ball and must be
between minpower and maxpower; the kicking angle is given in degrees and must be between minmoment

and maxmoment. When a kick command arrives at the server, the command will only be executed if the
ball is kickable for the player that issued the command. A player can kick the ball if it is within the
maximal kick distance defined as ball size + player size + kickable margin. In other words, this
means that a kick can be performed when the distance between the center of the ball and the center of
the player minus the radius of the ball minus the radius of the player is between 0 and kickable margin.

An important aspect of the kick model, is that the actual power with which the ball is kicked is not equal
to the Power argument supplied to the kick command, but depends on the relative position (angle and
distance) of the ball to the kicking player. For example, when the angle of the ball relative to the body of
the player is 0◦ this has no negative influence on the kick power. The larger this angle gets however, the
more the actual power will be reduced. In the worst case, the ball will be at a 180◦ angle to the player
(i.e. behind him) and the actual power is then reduced by 25%. For the distance the situation is similar.
When the minimum distance between the outer shape of the player and the ball equals 0 meters, this again
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leaves the kick power unaltered. However, when in the worst case this distance equals kickable margin,
the actual kick power will be reduced by 25%. If in this case the ball is also behind the player, the Power
argument supplied to the kick command will thus be reduced by a total of 50%. The actual power act pow
with which the ball is kicked is determined according to the following formula:

act pow = Power ·
(

1− 0.25 · dir diff
180

− 0.25 · dist diff

kickable margin

)

(3.26)

where Power is the kick power supplied as the first argument to the kick command, dir diff is the absolute
angle between the ball and the player’s body direction and dist diff is the distance between the player
and the ball (i.e. the minimum distance between the outer shape of the player and the outer shape of the
ball). The actual kick power act pow is used to calculate an acceleration vector ~at that will be added to
the global ball velocity ~vt during cycle t as shown by Equation 3.20. This acceleration ~at is applied at the
transition from simulation cycle t to t+ 1. The vector ~at is calculated as follows:

(atx, a
t
y) = act pow × kick power rate× (cos(θt), sin(θt)) + (k̃1, k̃2) (3.27)

where kick power rate is a server parameter which is used to determine the size of the acceleration vector
and θt is the direction in which the ball is accelerated in cycle t. This direction equals the sum of the
body direction of the kicking player and the Angle parameter of the kick command. Furthermore, noise
is added in the form of a small vector (k̃1, k̃2) with k̃i a random number taken from a uniform distribution
over the range [−kmax, kmax]. Here the value of kmax depends on the power supplied to the kick command
and is calculated according to the following formula:

kmax = kick rand · Power

max power
(3.28)

with kick rand a server parameter4. The acceleration vector ~at is then normalized to a maximum length
of ball accel max. In the current server version the value for ball accel max is such that it equals
the product of maxpower and kick power rate. This means that it is possible to obtain the maximum
acceleration when the ball is directly in front of the kicking player and is kicked with maximum power. As
indicated in Equation 3.20, the acceleration vector ~at is then added to the current velocity ~vt of the ball.
The resulting velocity vector is normalized to a maximum length of ball speed max and it is only after
this normalization step that noise and wind are added to the ball velocity. In soccer server version 7.x, the
values for ball accel max and ball speed max are such that it is possible to give the maximum speed to
the ball using a single kick. In earlier server versions this was not possible and multiple kicks in successive
cycles were needed to make the ball go faster5. Note that since the new ball position is calculated as a
vector addition (see Equation 3.21), the maximum distance that the ball can travel between two simulation
cycles is equal to ball speed max when noise and wind are neglected. Also note that the ball does not
get accelerated by other means than kicking, i.e. after the kick the acceleration of the ball remains 0 (see
Equation 3.23) until another kick is performed. With the current server settings, the ball can travel a
distance of about 45 meters assuming an optimal kick. In this case the ball will have covered a distance
of about 28 meters after 15 cycles with a remaining velocity of about 1 meter per cycle. After 53 cycles
the remaining velocity becomes smaller than 0.1 meters per cycle and the distance covered is about 43
meters. Table 3.5 shows the server parameters which are important for the kick model of soccer server
together with their default values.

4With the current server settings the value for kick rand equals 0.0 for default players. In the sequel we will therefore assume
that no noise is added. For heterogeneous player types however, this is not the case as will be discussed in Section 3.5.

5In order to give maximum speed to the ball on a kick, players would first kick the ball around themselves several times in
successive cycles, thereby continually increasing its velocity. The final kick would then be executed once it was possible to
give maximum speed to the ball. This principle was first introduced by the RoboCup-97 champion AT Humboldt (see [10]).
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Parameter Value Parameter Value

minpower -100 kickable margin 0.7
maxpower 100 kick power rate 0.027
minmoment -180 kick rand 0.0
maxmoment 180 ball accel max 2.7
ball size 0.085 ball speed max 2.7
player size 0.3

Table 3.5: Server parameters which are important for the kick model together with their default values.

3.4.2 Dash and Stamina Model

The dash command can be used by a player to accelerate himself in the direction of his body. This
command takes a single parameter: the Power of the dash. The dash power determines the amount of
acceleration of the player and must be between minpower and maxpower. When the Power argument in
the dash command is positive, the player is accelerated in forward direction; if Power is negative the
player dashes backwards. The soccer server prevents players from constantly running at maximum speed
(player speed max) by assigning a limited stamina to each of them. At the beginning of a half, the
stamina of each player is set to the value of the server parameter stamina max. Every time when a player
performs a dash, a certain amount of his stamina is consumed. Dashing backwards is more expensive
than dashing forward: on a forward dash (Power > 0) a player’s stamina is reduced by the Power of the
dash command, whereas on a backward dash (Power < 0) his stamina is reduced by 2 · |Power|. When a
player’s stamina is lower than the amount needed for a dash, the Power argument of the dash is reduced
in such a way that it does not require more than the available stamina.

A player’s stamina is modeled in three parts:

• Stamina: represents the current stamina of a player which must have a value somewhere between 0
and stamina max; the Power parameter of a dash command cannot exceed this value.

• Effort: represents the efficiency of player movement and lies between effort min and effort max.

• Recovery: influences the rate at which stamina is restored; it lies between recover min and 1.0.

A player’s stamina is decreased when he dashes and gets restored slightly in each cycle. Every cycle
in which the value for Stamina lies below a certain threshold, the values for Effort and Recovery are
decreased until a minimum is reached6. If the value for Stamina lies above another threshold then Effort
is increased up to a maximum, whereas the Recovery value is never increased7. Algorithm 3.1 shows the
stamina model algorithm which is applied in each simulation step in more detail.

As in the kick model (see Section 3.4.1), the actual power with which a player dashes is not necessarily
equal to the Power argument in the dash command. When a dash command arrives at the server, the
stamina of the player that issued the command is first reduced by the Power argument of the dash (or by
twice the absolute Power in case of a backward dash). The server then calculates the actual dash power
act pow, which in this case depends on the current Effort of the player in the following way:

act pow = Effort · Power (3.29)
6As of soccer server version 7.08 it is possible to see on the soccer monitor display when players become tired. In this case
the color of a player’s back fades and becomes whiter as his stamina drops. Color returns slowly when stamina is restored.

7It is restored to 1.0 at the beginning of each half.
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// reduce stamina according to dash power
if Power < 0 then

Stamina = Stamina −2 · |Power|
else

Stamina = Stamina − Power
end if

// reduce recovery when stamina is below recovery decrement threshold
if Stamina ≤ recover dec thr · stamina max then
if Recovery > recover min then

Recovery = Recovery − recover dec

end if
Recovery = Max(recover min, Recovery)

end if

// reduce effort when stamina is below effort decrement threshold
if Stamina ≤ effort dec thr · stamina max then
if Effort > effort min then

Effort = Effort − effort dec

end if
Effort = Max(effort min, Effort)

end if

// increase effort when stamina is above effort increment threshold
if Stamina ≥ effort inc thr · stamina max then
if Effort < effort max then

Effort = Effort + effort inc

end if
Effort = Min(effort max, Effort)

end if

// restore stamina according to recovery value
Stamina = Min(stamina max, Stamina + Recovery · stamina inc max)

Algorithm 3.1: The stamina model algorithm which is applied in each simulation step.

In the current server version the maximum effort value for a player is 1.0 (=effort max). As long as a
player manages his stamina in such a way that his Effort value never decreases, the actual dash power
will thus always be equal to the Power argument supplied to the dash command. The actual dash power
act pow is used to generate an acceleration vector ~at for the player in cycle t. This acceleration ~at is
applied at the transition from simulation cycle t to simulation cycle t+ 1 and is calculated as follows:

(atx, a
t
y) = act pow × dash power rate× (cos(θt), sin(θt)) (3.30)

where dash power rate is a server parameter which is used to determine the size of the acceleration vector
and θt is the body direction of the player in cycle t. The acceleration vector ~at is normalized to a maximum
length of player accel max, after which it is added to the current velocity ~vt of the player as shown by
Equation 3.20. The resulting velocity vector is then normalized to a maximum length of player speed max

and since the new player position is calculated as a vector addition (see Equation 3.21) this thus equals
the maximum distance that a player can cover between two simulation cycles (neglecting noise and wind
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which are added after the normalization). Note that a single dash will only set the acceleration vector for
one simulation cycle, after which the velocity of the player will decay. The acceleration of the player will
then remain 0 until he performs another dash. In order to keep up a sustained run over time, the player
must thus keep sending dash commands to the server. Table 3.6 shows the server parameters which are
important for the dash and stamina models of soccer server together with their default values.

Parameter Value Parameter Value

minpower -100 effort inc thr 0.6
maxpower 100 effort inc 0.01
stamina max 4000.0 recover dec thr 0.3
stamina inc max 45.0 recover dec 0.002
effort min 0.6 recover min 0.5
effort max 1.0 player accel max 1.0
effort dec thr 0.3 player speed max 1.0
effort dec 0.005 dash power rate 0.006

Table 3.6: Server parameters which are important for the dash and stamina models with default values.

3.4.3 Turn Model

When a player wants to turn (i.e. change his body direction) he must send a turn command to the server.
This command takes the angle (also called Moment) of the turn as its only parameter which has valid
values between minmoment and maxmoment degrees. As in the previous action models, the actual angle
by which a player turns does not always equal the Moment argument in the turn command. Instead, it
depends on the speed of the player. When a player has zero velocity, the angle that he will turn is equal
to the Moment argument of the turn command with noise added. As the player moves faster however,
it is more difficult for him to turn as a result of his inertia. The actual angle act ang that a player turns
when he issues a turn command is calculated as follows:

act ang =
(1.0 + r̃) ·Moment

1.0 + inertia moment · player speed (3.31)

where r̃ is a random number taken from a uniform distribution over the [−player rand, player rand]
interval, Moment is the argument supplied to the turn command, inertia moment is a server parameter
denoting the inertia of a player and player speed is the current speed of the turning player. In the current
server version the values for inertia moment, minmoment and maxmoment are 5.0, -180 and 180 respectively
for default players. When a default player moves at his maximum speed of 1.0 (player speed max), the
maximum effective turn that he can do is thus ±30 degrees (assuming no noise). However, since a player
cannot dash and turn in the same cycle, the maximum speed of a player when executing a turn equals
player speed max · player decay = 1.0 · 0.4 = 0.4; in this case the effective turn is ±60 degrees. Table
3.7 shows the server parameters which are important for the turn model together with their default values.

Parameter Value Parameter Value

minmoment -180 player rand 0.1
maxmoment 180 inertia moment 5.0

Table 3.7: Server parameters which are important for the turn model together with their default values.
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3.4.4 Say Model

When a player wants to broadcast a message to other players, he can use the say command. This
command takes a single parameter: the Message that the player wants to communicate. The length of
the message is restricted to say msg size (currently 512) characters, which must each come from the set
[0..9a..zA..Z().+-*/? <>] (without the square brackets). Spoken messages are immediately broadcast
to players from both teams8 without perceptual delay. However, each player has a limited communication
range: a spoken message is transmitted only to players within audio cut dist meters from the speaker.
Furthermore, players have a limited hearing capacity. This is modeled by the server parameters hear max,
hear inc and hear decay (refer back to Section 3.2.2 for a detailed explanation of the meaning of these
parameters). With the current server settings, each player can only hear one message from a teammate
every two simulation cycles. This means that although a player can speak as often as he wants (even
multiple times during the same cycle), it is useless to speak more frequently than that. Table 3.8 shows
the server parameters which are important for the say model together with their default values.

Parameter Value Parameter Value

say msg size 512 hear inc 1
audio cut dist 50.0 hear decay 2
hear max 2

Table 3.8: Server parameters which are important for the say model together with their default values.

3.4.5 Turn Neck Model

A player can turn his neck somewhat independently of his body using a turn neck command. This
command takes the Angle of the turn as its only parameter which has valid values between minneckmoment

and maxneckmoment degrees. By turning his neck a player changes the angle of his head relative to his
body and as a result his field of view changes. Note that a player’s field of view also changes when he
issues a turn command even if no turn neck command is executed. This is because the neck angle of a
player is relative to his body and the body angle changes as a result of the turn. As in the real world,
a player cannot turn his neck indefinitely in the same direction. The minimum and maximum angle of a
player’s neck relative to his body are given by the server parameters minneckang and maxneckang. When
the neck angle would assume an illegal value as a result of a turn neck command, the Angle argument
of the command is adapted in such a way that the neck angle remains within the allowed boundaries. It
is important to realize that a turn neck command can be executed in the same cycle as a kick, dash
or turn command. Furthermore, the actual angle by which a player turns his neck is always equal to
the Angle argument of the turn neck command, i.e. no noise is added and turn neck is not affected by
momentum like turn is. Table 3.9 shows the server parameters which are important for the turn neck
model together with their default values.

Parameter Value Parameter Value

minneckmoment -180 minneckang -90
maxneckmoment 180 maxneckang 90

Table 3.9: Server parameters which are important for the turn neck model with their default values.

8Recall from Section 3.2.2 that both teams use the same communication channel.
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3.4.6 Catch Model

When a goalkeeper wants to catch the ball he can do this by sending a catch command to the server. This
command takes the Direction in which he catches the ball as its only parameter which has valid values
between minmoment and maxmoment degrees. When a catch command arrives at the server, it will only be
executed if several preconditions are met. First of all, the goalkeeper is the only player that can perform
a catch. He can do this in play mode play on in any direction as long as the ball is inside his own penalty
box and inside his catchable area. If these conditions are not satisfied, the catch will fail. A goalkeeper’s
catchable area is defined as a rectangle with length catchable area l and width catchable area w in
the direction of the catch. This is illustrated in Figure 3.4 which shows the catchable area of a goalkeeper
when performing a catch at a −45◦ angle. If the ball is inside the catchable area, the goalkeeper will catch
the ball with probability catch probability. When a catch fails, the goalkeeper cannot issue another
catch command until catch ban cycle simulation cycles have passed; catch commands issued during
this time have no effect. When the goalkeeper does succeed in catching the ball, the play mode will change
to goalie catch ball x and then to free kick x where x is either l or r denoting the left or right team.
The goalkeeper can then use the move command (see Section 3.4.7) to move with the ball inside his own
penalty area. He can do this goalie max moves times before he kicks the ball. The server parameters
which are important for the catch model are shown in Table 3.10 together with their default values.
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Figure 3.4: The catchable area of a goalkeeper when performing a catch at a −45◦ angle. From [32].

Parameter Value Parameter Value

minmoment -180 catch probability 1.0
maxmoment 180 catch ban cycle 5
catchable area l 2.0 goalie max moves 2
catchable area w 1.0

Table 3.10: Server parameters which are important for the catch model with their default values.

3.4.7 Move Model

The move command can be used to place a player directly onto a desired position on the field. The
command takes two parameters, X and Y, denoting the x- and y-coordinate of this position. X must
have a value between −pitch length/2 and pitch length/2; Y must be between −pitch width/2 and
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pitch width/29. The move command cannot be used during normal play (i.e. when the play mode is
play on), but exists for two purposes only. First of all, the command is used to set up the team formation
at the beginning of a half (when the play mode equals before kick off) or after a goal has been scored
(play mode is goal l n or goal r n). In these situations, a player can be placed onto any position on his
own half of the field and can be moved any number of times as long as the play mode does not change.
When a player is moved to a position on the opponent half, the server moves him back to a random
position on his own half. Secondly, the move command is used by the goalkeeper to move inside his own
penalty area after catching the ball (see Section 3.4.6). The goalkeeper is allowed to move with the ball
goalie max moves times before kicking it. Additional move commands have no effect. Table 3.11 shows
the server parameters which are important for the move model together with their default values.

Parameter Value Parameter Value

pitch length 52.5 goalie max moves 2
pitch width 34.0

Table 3.11: Server parameters which are important for the move model together with their default values.

3.4.8 Change View Model

Using the change view command, a player can directly control the range and quality of the visual
information which is sent to him by the server. This command takes two parameters: the Width of the
player’s view cone and the Quality of the visual information. Valid values for the Width parameter are
narrow , normal or wide; Quality must be either high or low . A change view command can be
issued multiple times during the same cycle. A player can use the change view command to trade off
the width of his view cone and the quality of the visual information against the frequency with which
visual information arrives from the server. A higher view quality and a wider view cone, for example, will
lead to less frequent visual information. Refer back to Section 3.2.1 for a more detailed discussion.

3.4.9 Actions Overview

The actions which have been described in this section can be divided into two distinct categories: primary
actions (kick, dash, turn, catch and move) and concurrent actions (say, turn neck, change view,
sense body and score). During each cycle only one primary action can be executed, whereas multiple
concurrent actions can be performed simultaneously with any primary action. If an agent sends more
than a single primary action command during a cycle, the server randomly chooses one for execution and
discards the others. Table 3.12 summarizes all the actions which can be performed by an agent and shows
when and how often the commands can be executed by the server.

3.5 Heterogeneous Players

A new feature of soccer server version 7 was the introduction of heterogeneous players. In earlier server
versions all the players on the field were physically identical and the values for the player parameters were
the same for each player. In soccer server version 7 however, each team can choose from several different
player types with different characteristics. These player types are randomly generated when the server is

9When specifying positions in global coordinates, the coordinate system is such that the negative x-direction for a team is
towards the goal it defends; the negative y-direction is towards the left side of the field when facing the opponent’s goal.
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Syntax Arguments Executed Frequency limit

(kick double double) power, direction end of cycle
(dash double) power end of cycle
(turn double) moment end of cycle one of these per cycle
(move double double) (x,y) position end of cycle
(catch double) angle end of cycle
(say str) message string instantly none (max. one heard every two cycles)
(turn neck double) moment end of cycle one per cycle
(change view str str) width, quality instantly one per cycle
(score) - instantly none
(sense body) - instantly three per cycle

Table 3.12: Overview of all action commands which are available to soccer server agents.

started. In a match, both teams choose their players from the same set of types. The number of player
types generated equals the value of the server parameter player types (currently 7). Out of these types,
type 0 is the default player and is always the same10, whereas the other types are different each time when
the server is started. The non-default players all have different abilities based on certain trade-offs which
are defined by the values of several heterogeneous player parameters. An example is that these players are
usually faster than the default player, but also get tired more quickly. When a client program connects
to the server, the server sends it a number of messages11 some of which contain information about the
generated player types. For each available type, the server sends a message with the following format:

(player type id player speed max stamina inc max player decay inertia moment dash power rate

player size kickable margin kick rand extra stamina effort max effort min)

These messages thus define the abilities of each player type by providing specific values for several player-
related parameters which hold for that type. For the default player type the values of these parameters
are fixed and for the other types they are randomly chosen from different intervals which are defined by
certain heterogeneous player parameters. Table 3.13 shows the heterogeneous player parameters which
define these intervals and compares the parameter values for default players to the range of parame-
ter values for heterogeneous players. The maximum speed of a default player, for example, is equal to
the value of the server parameter player speed max, whereas for a heterogeneous player the maximum
speed is some value between player speed max + player speed max delta min and player speed max

+ player speed max delta max. In the same way, the maximum stamina increase per cycle for a het-
erogeneous player is the default stamina inc max plus a value between player speed max delta min

· stamina inc max delta factor and player speed max delta max · stamina inc max delta factor.
This thus shows that for heterogeneous players there is a trade-off between the maximum speed of the
player and the stamina increase per cycle. The calculation of value ranges for the remaining player
parameters is analogous and can be done using the values in Table 3.13.

The online coach for each team (see Section 3.7) is responsible for selecting the player types to use and
for changing them when necessary. As long as the play mode equals before kick off12 the coach can
change player types as often as he wants. During the game however, the coach can only make subs max

substitutions. Furthermore, a team is never allowed to have more than subs max players of the same player
type on the field simultaneously and must always use a default player as the goalkeeper. Each time when

10The values for the default player parameters are equal to those shown in earlier sections.
11These messages contain values for server parameters, player parameters, etc.
12This is the case before the start of the first half and during half-time.
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Player parameters Parameters for heterogeneous players
Name Value Name Value Range

player speed max delta min 0.0
player speed max 1.0

player speed max delta max 0.2
1.0−1.2

stamina inc max delta factor -100
stamina inc max 45.0 player speed max delta min 0.0 25.0−45.0

player speed max delta max 0.2
player decay delta min 0.0

player decay 0.4
player decay delta max 0.2

0.4−0.6

inertia moment delta factor 25.0
inertia moment 5.0 player decay delta min 0.0 5.0−10.0

player decay delta max 0.2
dash power rate delta min 0.0

dash power rate 0.006
dash power rate delta max 0.002

0.006−0.008

player size delta factor -100.0
player size 0.3 dash power rate delta min 0.0 0.1−0.3

dash power rate delta max 0.002
kickable margin delta min 0.0

kickable margin 0.7
kickable margin delta max 0.2

0.7−0.9

kick rand delta factor 0.5
kick rand 0.0 kickable margin delta min 0.0 0.0−0.1

kickable margin delta max 0.2
extra stamina delta min 0.0

extra stamina 0.0
extra stamina delta max 100.0

0.0−100.0

effort max delta factor -0.002
effort max 1.0 extra stamina delta min 0.0 0.8−1.0

extra stamina delta max 100.0
effort min delta factor -0.002

effort min 0.6 extra stamina delta min 0.0 0.4−0.6
extra stamina delta max 100.0

Table 3.13: Comparison between parameter values for default players and value ranges for heterogeneous
players. For each player parameter on the left, the heterogeneous player parameters which define its value
range are shown on the right. This makes it clear which trade-offs exist between the player parameters.

the coach substitutes a player by another player, the new player gets the initial Stamina, Recovery and
Effort values of the corresponding player type. Table 3.14 shows the server parameters for heterogeneous
player types together with their default values.

3.6 Referee Model and Play Modes

To enforce the rules of the game, the simulator includes an automated referee which controls a match.
This referee changes the play mode of the game in different situations. Whenever the play mode changes,
the automated referee announces this by sending a message to all the players. In this way each player
is constantly aware of the current state of the game. Furthermore, the referee will also announce events
such as a goal or a foul. Examples of situations in which the referee acts are the following:
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Parameter Value

player types 7
subs max 3

Table 3.14: Server parameters for heterogeneous player types together with their default values.

• A kick-off takes place from the center spot on the field at the start of play and after every goal. Just
before this kick-off, all the players must be on their own half of the field. After a goal, the referee
will therefore suspend the match for about 5 seconds to allow for this to happen. During this time
the players can use the move command to teleport to a position, rather than running there which is
much slower and consumes stamina. If a player is still on the opposite half by the time the kick-off
must take place, the referee moves this player to a random position on his own half of the field.

• If a goal is scored the referee announces this by broadcasting a message to all the players. He then
updates the score and moves the ball to the center spot. After this, he changes the play mode to
kick off x, where x is either l or r depending on which team should perform the kick-off, and he
suspends the match for 5 seconds to allow players to move back to their own half (see above).

• When the ball goes out of bounds, the referee moves it to an appropriate position and changes the
play mode to either kick in, corner kick or goal kick. In case of a ‘kick in’ the referee places
the ball at the point on the side line where it left the field; in case of a ‘corner kick’ he places the
ball just to the inside of the appropriate corner of the field (the exact position is determined by the
value of the server parameter ckick margin); for a ‘goal kick’ he places the ball at the front corner
of the goal area at the side of the field where it passed the end line.

• During play, the referee also enforces the offside rule. A player is in an offside position when he is on
the opponent’s half of the field and closer to the opponent’s end line than all or all but one13 of the
opponent players when the ball is passed to him. The crucial moment for an offside decision is when
the ball is kicked and not when it is received: a player can be in an onside position when he receives
the ball, but could have been in an offside position when the ball was kicked towards him. The referee
will actually call the offside violation when the ball comes closer than offside active area size

(currently 5.0 meters) to the player that was in an offside position when the ball was played to him.
After the call he will give a free kick to the opposite team.

• When a ‘kick off’, ‘free kick’, ‘kick in’ or ‘corner kick’ has to be taken, the referee removes all the
players that are located within a circle with radius offside kick margin (currently 9.15 meters)
centered on the ball and places them on the perimeter of that circle. In case of an offside call, all
the offending players are also moved to an onside position. Furthermore, when the play mode equals
goal kick, the opponent players are moved outside the penalty area and are not allowed to re-enter
this area while the goal kick takes place.

• When the play mode equals kick off, free kick, kick in or corner kick, the referee changes the
play mode to play on immediately after the ball starts moving as a result of a kick command. In
case of a goal kick, the play mode is changed to play on as soon as the ball leaves the penalty area.

• At the end of the first and second half the referee suspends the match. Each half lasts for half time

(currently 300) seconds (=3,000 cycles) and when the scores are tied at the end the match is ex-
tended14. In this case, the team that scores the first goal in extra time wins the game (this procedure
is also known as ‘sudden death’ or ‘golden goal’).

13This ‘one’ is usually the opponent goalkeeper.
14This actually only happens during the knock-out stage of an official competition.
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Each message that is sent by the referee has the format ‘(referee String)’, where String is a string
denoting the contents of the message (e.g. a play mode). Players receive messages from the referee as
hear messages. The referee messages are treated as privileged in the sense that a player can hear them
in every situation independent of the number of messages that he has heard from other players. All the
possible referee messages (including play modes) are shown in Table 3.15. Table 3.16 shows the server
parameters which are important for the referee model together with their default values.

Message Tc Subsequent play mode Comment

before kick off 0 kick off Side at beginning of a half
play on during normal play
time over after the match
kick off Side announce start of play (after

pressing the Kick Off button)
kick in Side play on play mode changes after ball kicked
free kick Side play on play mode changes after ball kicked
corner kick Side play on play mode changes after ball kicked
goal kick Side play on play mode changes once

ball leaves the penalty area
drop ball 0 play on occurs when ball is not put into play

after drop ball time cycles
offside Side 30 free kick OSide free kick for opposite side
goal Side n 50 kick off OSide announce nth goal for Side
foul Side 0 free kick OSide announce foul committed by Side

goalie catch ball Side 0 free kick OSide announce goalie catch by Side

time up without a team 0 time over sent if there was no opponent
until end of second half

time up 0 time over sent at the end of the match
(if time ≥ 2·half time and
scores for both teams are different)

half time 0 before kick off end of first half
time extended 0 before kick off end of second half with scores tied

Table 3.15: Possible referee messages (including play modes). Here Side is either l or r denoting the
left or right team; OSide is the opposite side; Tc is the time (i.e. number of cycles) until the subsequent
play mode will be announced.

Parameter Value Parameter Value

ckick margin 1.0 forbid kick off offside true
offside active area size 5.0 half time 300
offside kick margin 9.15 drop ball time 200
use offside true

Table 3.16: Server parameters which are important for the referee model along with their default values.
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3.7 Coach Model

The coach is a privileged client that can be used by a team to assist its players. The soccer server provides
two kinds of coaches: an online coach and a trainer. Both coaches receive noise-free global information
about all the objects on the field. Furthermore, they can substitute player types and broadcast messages
to the players. The main difference between the two coaches is that the online coach may connect to
official games, whereas the trainer may only be used during the development stage of a team. In general,
the trainer can exercise more control over the game than the online coach can. For example, the trainer
can control the play mode of the game (even deactivating the automated referee if necessary) and he can
move the ball and players from both teams to any location on the field at any moment and set their
directions and velocities. The trainer is therefore often used to automatically create training situations.
The online coach, on the other hand, is used during games to provide additional advice and information
to the players. His capabilities are limited compared to those of the trainer since he cannot control the
game and is only allowed to communicate with the players of his own team. In order to prevent the online
coach from controlling his players in a centralized way, the communication from the coach to the players is
restricted. Since the coach receives a noise-free and global view of the field and has less real-time demands,
he can spend more time deliberating over strategies than the players. The online coach is therefore a good
tool for analyzing the strengths and weaknesses of the opponents and for giving strategic advice.

In order to enable a coach to work together with different teams, a standard coach language has been
developed. During play, the coach is only allowed to communicate with his players using this language.
The standard coach language is based on several low-level concepts which can be combined to construct
higher-level concepts. It contains five types of messages:

• Info. Info messages contain information that the coach believes the players should know, e.g.
frequent positions or player types of opponents players.

• Advice. Advice messages tell the players what the coach believes they should do. This can be
either at an individual, group or team level. Advice messages consist of a condition and a directive
that specify in which type of situation a certain action should be performed.

• Define. Define messages introduce names to facilitate future reference (e.g. shortcuts for regions).

• Meta. Meta messages contain meta-level information about the interaction between the coach and
the players, such as the number of messages sent or the version of the coach language.

• Freeform. Freeform messages can only be sent by the coach during non-play on play modes.
There is no restriction on the format of these messages except for the fact that their length may not
exceed say coach msg size characters. Note that freeformmessages will probably not be universally
understood if the coach has to work with different teams.

The coach is allowed to send clang Type win messages of type Type (where Type equals info, advice,
define or meta) every clang win size simulation cycles. With the current server parameter values, this
means that the coach can send at most one message of each type every 300 cycles. Furthermore, the
messages are delayed for clang mess delay cycles before they are heard by the players. Note that these
restrictions do not apply for non-play on play modes during which clang mess per cycle messages can
be sent to the players in each cycle. These messages are heard by the players without delay and do not
count for the message number restriction. For freeform messages the only restriction is that the coach is
allowed to send say coach cnt max of them throughout the game. For a full grammar of the standard
coach language we refer the reader to the soccer servermanual [32]. Table 3.17 shows the server parameters
which are important for the coach model along with their default values.
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Parameter Value Parameter Value

coach port 6001 clang win size 300
olcoach port 6002 clang info win 1
say coach msg size 128 clang advice win 1
say coach cnt max 128 clang define win 1
player types 7 clang meta win 1
subs max 3 clang mess delay 50
send vi step 100 clang mess per cycle 1

Table 3.17: Server parameters which are important for the coach model along with their default values.

3.8 Summary of Main Features

The simulator features that have been described in this chapter together provide a challenging environment
in which to conduct research. The RoboCup Soccer Server provides a realistic domain in the sense that
it contains many real-world complexities that the agents must handle. In this section we summarize the
most important characteristics and challenges of the soccer server simulation environment.

• The soccer server is a pseudo real-time system that works with discrete time intervals (simulation
cycles) each lasting 100ms. During this period, the agents receive various kinds of sensory obser-
vations from the server and send requests for player actions to the server. This requires real-time
decision making. It is only at the end of a cycle however, that the server executes the actions and
updates the state of the environment. The server thus uses a discrete action model (see Section 3.1).

• Each agent is controlled by a separate client process which enforces a distributed approach (see
Section 3.1). Agents cannot communicate with each other directly, but only indirectly via the soccer
server using say and hear protocols which restrict the communication in several ways. Furthermore,
all 22 agents on the field use a single communication channel which has a low-bandwidth and is
extremely unreliable (see Section 3.2.2).

• An agent has three different types of sensors: a visual sensor, an aural sensor and a body sensor.
The visual sensor (see Section 3.2.1) provides the agent with information (distances, directions, etc.)
about all the objects in his current field of view. It also works as a proximity sensor by ‘seeing’
objects that are close but behind the agent. The amount of information given depends on the
distance to an object. All visual information is relative from the agent’s perspective and can be
converted into a global representation using landmarks which have been placed on and around the
field (see Figure 3.2). Noise is added to the visual sensor data by quantizing the values sent by the
server. The view cone of an agent has a limited width and as a result the agent only has a partial
view of the world which causes large parts of the state space to remain unobserved. However, an
agent can choose to trade off the frequency of visual messages against the width of his view cone and
the quality of the given information. The aural sensor (see Section 3.2.2) detects spoken messages
sent by other players or the coach. It has a limited range and capacity: with the current server
settings each agent can hear only one message from a nearby teammate every two simulation cycles.
Messages from the referee are also treated as aural messages. The body sensor (see Section 3.2.3)
provides an agent with physical information such as his stamina and current speed. It also reports
information about the number of actions that the agent has performed.

• An agent can perform different types of actions (see Section 3.4) which can be divided into two
distinct categories: primary actions (kick, dash, turn, catch and move) and concurrent actions
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(say, turn neck, change view, sense body and score). During each cycle only one primary
action can be executed, whereas multiple concurrent actions can be performed simultaneously with
any primary action. If an agent sends more than a single primary action command during a cycle,
the server randomly chooses one for execution and discards the others. There is thus no guarantee
that action commands sent by an agent are ever executed and this must therefore be verified from
the sensory information that is received. One of the real-world complexities contained in the soccer
server is that noise is added to the actuator parameters in different ways.

• Sensing and acting in the soccer server are asynchronous (see Section 3.1): visual information arrives
at 150ms intervals (with a default view cone and view quality) and agents can perform a primary
action once every 100ms. Since it is crucial for an agent to perform an action whenever he has
the opportunity, this means that in some cycles the agents must act without receiving new visual
information. This requires their ability to predict the current world state based on past perceptions.

• The soccer server simulates object movement (see Section 3.3) stepwise in a simple way: the velocity
of an object is added to its position, while the velocity decays by a certain rate and increases by the
acceleration of the object resulting from certain action commands. To reflect unexpected movements
of objects in the real world, uniformly distributed random noise is added to the movement of all
objects. Besides this, the soccer server also models wind as a more natural form of movement noise.

• The soccer server prevents players from constantly running at maximum speed by assigning a limited
stamina to each of them (see Section 3.4.2). When a player performs a dash command this consumes
some of his stamina but his stamina is also slightly restored in each cycle. If a player’s stamina drops
below a certain threshold this will affect the efficiency of his movement.

• A new feature of soccer server version 7 was the introduction of heterogeneous players (see Section
3.5). Each team can choose from several different types of players with different characteristics.
These player types are randomly generated when the server is started. The different player types
have different abilities based on certain trade-offs with respect to the player parameters. For example,
some types will be faster than others but they will also become tired more quickly.

• The soccer server contains an automated referee which controls the match (see Section 3.6). This
referee changes the play mode of the game in different situations. Whenever the play mode changes,
the automated referee announces this by sending a message to all the players. In this way, each
player is constantly aware of the current state of the game. The referee messages are treated as
privileged in the sense that a player can hear them in every situation independent of the number of
messages that he has heard from other players.

• It is possible to define a coach agent that receives noise-free global information about all the objects
on the soccer field (see Section 3.7). The coach is a good tool for analyzing the strengths and
weaknesses of the opponent team and for giving advice to his players about the best possible strategy.
He can also be used for automatically creating training situations during the development stage of
a team and is responsible for selecting and substituting heterogeneous player types.



Chapter 4

Agent Architecture

In this chapter we present the UvA Trilearn 2001 agent architecture. We will define the different layers
that make up this architecture and explain the functionality of each layer. Furthermore, we will describe
the various components of the system and the way in which these components interact. This will give
the reader a clear picture of the structure of the overall system. Note that the architecture described in
this chapter is the architecture for one agent and not for the team as a whole. The UvA Trilearn 2001
agents must operate in a dynamic and real-time environment in which communication is limited and as
a result there is not enough time to negotiate complex team plans. The architecture for the agents is
therefore built in such a way that each agent can work independently. Team behavior then results from
the combination of behaviors of individual agents. The chapter is organized as follows. In Section 4.1 we
provide a general introduction to the concept of an architecture and discuss different ways in which such
an architecture can be described. In Section 4.2 we then present the functional architecture of the UvA
Trilearn 2001 agents. The various components of the system are described in Section 4.3 along with their
place in the overall architecture. The chapter is concluded in Section 4.4 which explains the control flow
of the system and gives an example of how the different processes interact with one another over time.

4.1 Introduction

From a software engineering perspective, architecture alludes to “the overall structure of the software
and the ways in which that structure provides conceptual integrity for a system” [88]. In its simplest
form, an architecture describes the structure of the system’s components (modules), the way in which
the components interact and the structure of the data that are used by these components. As such,
the architecture can serve as a framework from which abstractions or more detailed descriptions of the
system can be developed. An architectural design can be represented by a number of different models [33].
Structural models represent an architecture as an organized collection of system components. Framework
models increase the level of design abstraction by attempting to identify repeatable architectural design
frameworks (patterns) that are encountered in similar types of applications. Dynamic models address the
behavioral aspects of the system architecture, indicating how the structure or system configuration may
change as a function of external events. Process models focus on the design of the process that the system
must accommodate. Finally, functional models can be used to represent the functional hierarchy of a
system. To represent these models, a number of different architectural description languages have been
developed, some of which will be used throughout the remainder of this chapter.

43
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From an autonomous systems point of view, an architecture can be seen as a general description of what
the system looks like and how it should behave. Such a description can be given at different levels of detail.
According to [116], three levels of abstraction can be distinguished in the description of an autonomous
system which are each represented by their respective architecture:

• Functional Architecture. This architecture concerns itself with the functional behavior that the
system should exhibit. It describes what the system should be capable of doing, independent of
hardware constraints and environmental conditions.

• Operational Architecture. This architecture describes the way in which the desired behavior can be
realized, taking into account the constraints on the system as well as the environment in which it
has to operate. It assigns different pieces of the overall problem to different logical modules, which
have the responsibility to solve their part within a certain time.

• Implementation Architecture. This architecture maps the operational aspects onto hardware and
software modules and as such it gives a detailed description of the realization of the system.

It is important to realize that splitting the description of a system into these three architectures is quite
arbitrary and by no means universal. The choice made in [116] can be seen as roughly equivalent with
splitting the development of a system into an analysis, design and implementation part. Many researchers
however divide the process into different phases and as a result distinguish different abstraction levels for
architectural descriptions. Throughout this chapter, we will mainly focus on the functional aspects of the
UvA Trilearn 2001 agent architecture. Operational and implementational descriptions are omitted, since
we feel that these would not contribute to the global picture that we want to provide. However, several
operational and implementational aspects will be addressed in later chapters.

In the autonomous systems community there are two general ways for describing a system at the functional
level: the classical hierarchical approach and the behavioral approach. The common feature in hierarchical
architectures is that the system is divided into progressive levels of abstraction which are represented by
different architectural layers. In this approach, the flow of information is used as the main guideline for
the decomposition of the system. The lowest level in the hierarchy takes care of the interaction with the
physical world through sensors and actuators. Information enters the system through the sensors and
is gradually abstracted upwards to form a high-level model of the world. The knowledge present at the
highest level is used to decide on the action to be performed. This action is then gradually translated
into commands which are executed at the lowest level. The power of this approach is the transparent
control structure of the system: it can be seen to consist of two legs where one leg represents the flow
of data upwards through the different levels and the other represents the flow of commands downwards.
Disadvantages are the overhead caused by maintaining the abstract world model and the rigidity of the
architecture. Due to the hierarchical structure of the system, the interaction between different modules is
restricted to adjacent layers. Each module has to communicate with the layers directly above and below
it through well defined interfaces. Whenever the interface of a module has to be changed, these changes
will thus affect other modules as well and this might force a major redesign of the overall system.

In systems with a behavioral decomposition the main idea is to break up the problem into goals that
should be achieved instead of stages of information flow. Instead of one path through which the data flow,
multiple parallel paths are exploited which are called behaviors. For each behavior, the data flow along
the path from sensors to actuators thereby omitting the reasoning step [9]. A behavior can thus be seen
as a module which accepts sensory input and generates actuator control commands. The power of this
approach is that it leads to robust systems which can be easily extended. If a single module breaks down,
this will lead to a minor degradation of the overall system and not to total failure. Furthermore, multiple
goals can co-exist in the system since each module is independent of the others and adding new goals
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will thus be easy. Drawbacks of this approach are its inefficiency and interpretability: a lot of equivalent
processing and computation work is performed in several modules and it is not clear in advance how the
different control signals will be combined. Besides this, the implementation is also difficult.

The two views described above can be summarized as follows. In the hierarchical approach it is first
decided what the best possible strategy is, after which this chosen strategy is worked out. In the behavioral
approach all possible alternative strategies are worked out and subsequently it is decided which strategy is
the best. In practice however, it is often the case that neither a purely hierarchical nor a purely behavioral
decomposition of an autonomous system will work well. The key observation for this is that high-level
reasoning is completely sequential, whereas the real-time control of the system involves mostly parallel
processing. Another type of decomposition has therefore emerged which combines the characteristics of
both views into a hybrid approach. The general trend in hybrid architectures is that the higher abstraction
levels are more hierarchical, whereas the lower levels are more behavioral. The resulting system then
enables both high-level reasoning and low-level reflexive control.

4.2 Functional Architecture

Complex tasks, such as simulated robotic soccer, can always be hierarchically decomposed into several
simpler subtasks. This naturally leads to agent architectures consisting of multiple layers. Figure 4.1 shows
the UvA Trilearn 2001 agent architecture. The design is based on the hybrid approach that was described
in Section 4.1. This choice was made because we wanted our agents to be capable of reasoning about the
best possible action without losing too much time on sending or receiving data. In order to deal with the
timing constraints caused by the real-time nature of the domain, it was therefore desirable that the agents
could perform this high-level reasoning process independently from taking care of their interaction with
the environment. Given these characteristics, it was clear that a hierarchical decomposition was needed
for the higher abstraction levels, whereas the bottom level required the benefit of parallel processing.
Adopting a somewhat hybrid approach thus seemed to be the most appropriate choice.
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Figure 4.1: The UvA Trilearn 2001 agent architecture.
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The architecture shown in Figure 4.1 is hierarchical in the sense that it contains three layers at different
levels of abstraction. The bottom layer is the Interaction Layer which takes care of the interaction with
the soccer server simulation environment. This layer hides the soccer server details as much as possible
from the other layers. The middle layer is the Skills Layer which uses the functionality offered by the
Interaction Layer to build an abstract model of the world and to implement the various skills of each
agent (ball interception etc.). The highest layer in the archictecture is the Control Layer which contains
the reasoning component of the system. In this layer, the best possible action is selected from the Skills
Layer depending on the current world state and the current strategy of the team. During a soccer game,
perceptions enter the system through the Interaction Layer and flow upwards to the Skills Layer where
they are used to update the agent’s world model. The most recent world state information is then used
by the Control Layer to reason about the best possible action. The action selected by the Control Layer
is subsequently worked out in the Skills Layer which determines the appropriate actuator command. This
command is then executed by the actuator control module in the Interaction Layer.

UvA Trilearn agents are thus capable of perception, reasoning and acting. The setup for the agent
architecure shown in Figure 4.1 is such that these three activities can be performed in parallel. Since the
agents have to operate in a dynamic real-time environment, the concurrent execution of these tasks is very
important for performance reasons. We have chosen to implement the desired parallellism using threads as
they appeared intuitively appropriate for the requirements and (assuming implementation in C++) have
native support in the Linux/UNIX operating system. A thread can be thought of as “a set of properties
that suggest continuousness and sequence within a machine” [12]. When a program is started, a process
is created which operates in its own address space and has its own data. This process can be seen as a
single thread of execution. In a single-threaded program, the initial process generated by the executable
file does not create any additional threads and as a result all computations are performed sequentially. A
single-threaded agent implementation would thus have meant a perception-reasoning-action loop in which
the separate tasks could only be performed in a serial order. Given the nature of the simulation, it is clear
that this would put a significant restriction on the agent’s performance caused by the fact that he has to
wait for slow I/O operations to and from the server which delay the execution of the loop.

Instead of a single thread however, a process can also have multiple threads which share the same address
space and perform different operations independently. Our agent architecture is multi-threaded in the
sense that it allows the agent to use a separate thread for each of his three main activities: the Sense
thread represents the perception module, the Act thread represents the actuator control module and
the Think thread represents the modules from the Skills Layer and Control Layer in Figure 4.1. The
main advantage of this approach is that the delay caused by I/O to and from the server is kept to a
minimum. The threads that perform I/O, i.e. the Sense thread and the Act thread, are only active when
necessary and can use blocking I/O1 without wasting valuable computation time for the Think thread.
In this way the Think thread gets the maximum amount of CPU-time and the agent can thus spend
the majority of his time thinking about the best possible action [36]. Prior research in the soccer server
simulation environment has shown that a multi-threaded approach clearly outperforms a single-threaded
one in terms of efficiency and responsiveness (see [52]). Furthermore, the division into separate threads
also leads to modular programs in which the different tasks of the agent are clearly separated. There are
some disadvantages as well however, since multi-threaded implementations are often more complicated
than single-threaded ones due to synchronization protocols and possible deadlocks and race conditions.

1Both Linux and UNIX provide five different I/O models: blocking I/O, non-blocking I/O, I/O multiplexing, signal-driven
I/O and asynchronous I/O. Blocking I/O means that when a process requests data, it is put to sleep until data are available.
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4.3 System Components

It has already been mentioned in Section 4.1 that an architectural design can be represented by a number
of different models. Figure 4.1 shows the functional hierarchy of the UvA Trilearn 2001 agent architecture
and therefore it can be seen as a functional model. In such models, the hierarchical decomposition is
guided by the flow of data through the system. From a software point of view however, it is also possible
to represent an architecture as an organized collection of system components. This type of model is
called a structural model, since it identifies the various components of the system and specifies how these
components interact with one another. This view of a system as a collection of components rather than
functions is closely associated with object orientation, the software development paradigm that we have
consequently followed throughout the project. In this paradigm objects can be seen to model almost
any identifiable aspect of a problem domain: external entities, occurrences, roles, organizational units,
places and structures can all be represented as objects. The object-oriented approach defines objects as
program components that are linked to other components through well-defined interfaces. These objects
can be categorized into classes and class hierarchies. Each class contains a set of attributes that describe
the objects in the class and a set of operations that define their behavior. Objects can thus be seen to
encapsulate both data and methods that are used to manipulate these data. The concept of inheritance
enables the attributes and operations of a class to be inherited by all its subclasses in the class hierarchy
and thus by all the objects that are instantiated from these subclasses. Consistently following an object-
oriented approach will thus lead to modular systems which can be easily extended through the use of
inheritance and in which the various components (i.e. objects) are reusable as a result of encapsulation.
For a detailed account of the object-oriented design methodology we refer the reader to [68].

Clearly, an object-oriented design lays the foundation for a component-based model of a system archi-
tecture. In order to represent such a model one can use a number of different architectural description
languages. An example of such a language is the Unified Modeling Language (UML) [83]. UML is a
language for specifying, visualizing, constructing and documenting the artifacts of software systems. In
addition, the language can also be used for modeling business processes and other types of non-software
interactions. UML represents a collection of the best engineering practices that have proven successful
for the modeling of large and complex systems. The language has been accepted by the Object Manage-
ment Group (OMG) as a standard for modeling object-oriented programs and can be seen as the proper
successor to the object modeling languages of three previously leading object-oriented methods (Booch,
OMT and OOSE). UML defines nine different types of graphical diagrams2, each of which provides a
different perspective of the system under analysis or development. One of these types is the class diagram
which describes the static structure of the system. In particular, it describes the things that exist in
the system (classes, types, etc.), their internal structure and their relationships to other things. Classes
are represented by rectangles which are divided into three compartments: the top compartment holds
the name of the class, the middle compartment holds a list of attributes that describes the class and
the bottom compartment holds the operations defined for these attributes. Relationships between classes
are indicated by different types of connections (lines, arrows, etc.) which indicate the kind of relation.
Relationships which are relevant for the subsequent discussion are the following:

• Association. This represents a static relationship between two classes. An association is depicted
by a filled arrow which indicates the direction of the relationship. It is important to realize that
the arrow in this case does not represent the flow of data between components, but can be seen to
indicate which component needs to ‘know’ about the other. Multiplicity notations are placed near
the ends of an association to indicate the number of instances of one class linked to one instance

2These are: class diagrams, object diagrams, use case diagrams, sequence diagrams, collaboration diagrams, statechart
diagrams, activity diagrams, component diagrams and deployment diagrams.
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Figure 4.2: UML class diagram showing the main components of the UvA Trilearn agent architecture.

of the other class. For example, one company will have one or more (1..*) employees, but each
employee will only work for one company.

• Composition. This represents a relationship between two classes in which one class is a part of the
other. A composition is depicted by a solid line which ends in a filled diamond. This diamond is
connected to the ‘whole’ class, i.e. the class that contains the other class as its part. Multiplicity
relations are again placed at the ends of the connection.

• Generalization. This is another name for inheritance. It represents an ‘is a’ relationship between
two classes where one class is a specialized version of the other. Generalization is depicted by an
open arrow pointing from the specialized class (the subclass) to the general class (the superclass).

Figure 4.2 represents the UvA Trilearn 2001 agent architecture in the form of an UML class diagram. The
attributes and operations for each class have been omitted since this information would not contribute to
the global picture that we want to present. Note that the interaction between different components has
been kept to a minimum in order to keep the response time for the agents as low as possible. Furthermore,
this gives the system a relatively simple structure which enables one to maintain a clear view of the different
objects and the way they interact. The diagram shown in Figure 4.2 maps the various components of
the system onto the functional architecture presented in Figure 4.1. The mapping is roughly as follows.
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The perception and actuator control modules in the Interaction Layer are represented by a SenseHandler
object and an ActHandler object respectively. The modeling module in the Skills Layer is represented by
objects from the classes WorldModel and Object, whereas the action refinement module in this layer is
represented by a BasicPlayer object. Finally, the reasoning module in the Control Layer is represented
by a Player object, a PlayerSettings object and a Formations object. The role in the overall architecture
of the components depicted in Figure 4.2 is explained below. Issues related to the way in which these
components have been implemented are discussed in Appendix A.

• Connection. This component creates a UDP socket connection with the soccer server and contains
methods for sending and receiving messages over this connection. All the communication with the
soccer server goes through this component.

• SenseHandler. This component handles the processing of messages that the agent receives from the
server. It parses these messages and sends the extracted information to theWorldModel component.

• WorldModel. This component contains the current representation of the world as observed by the
agent. This representation includes information about all the objects on the field such as the positions
and velocities of all the players and the ball. Furthermore, information concerning the current play
mode is also stored, as well as the time and the score. The WorldModel component contains four
types of methods that deal with this information in different ways:

– Retrieval methods: for directly retrieving information about objects in the agent’s world model.

– Update methods: for updating the agent’s world model based on new sensory information
received from the SenseHandler.

– Prediction methods: for predicting future states of the world based on past perceptions.

– High-level methods: for deriving high-level conclusions from basic information about the state
of the world (e.g. determining the fastest teammate to the ball).

• Object. This component contains information about all the objects in the simulation. Its imple-
mentation is spread over six separate classes, five of which have not been depicted in Figure 4.2
for reasons of space and clarity. The Object class is the abstract superclass that contains estima-
tions for the global positions of all the objects and defines methods for retrieving and updating
this information. This class has two subclasses: FixedObject and DynamicObject. The FixedObject
class contains information about the stationary objects on the field (lines, flags and goals). The
DynamicObject class contains information about moving objects and as such it adds velocity infor-
mation to the general information provided by the Object class. The DynamicObject class again has
two subclasses, PlayerObject and BallObject, which respectively contain information about players
(teammates and opponents) and the ball. Finally, the PlayerObject class has one subclass called
AgentObject which contains extra information about the agent himself. Note that the information in
each class is stored together with a confidence value that indicates the reliability of the estimation.
This confidence value is related to the time that passed since the object was last observed.

• Formations. This component contains information about possible team formations and a method
for determining a strategic position. Its implementation is spread over three separate classes, two
of which have not been depicted in Figure 4.2 for reasons of space and clarity. The Formations
class contains the information about the different types of team formations and stores the current
formation type and the agent’s number in this formation which determines his role. Furthermore,
it contains a method for determining a strategic position on the field depending on the current
formation and the position of the ball. The FormationTypeInfo class contains all the information
about one specific formation, i.e. the number of possible team formations is equal to the number of
objects instantiated from this class. For each formation, the information is read from a configuration
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file when the agent is started. This information includes the type of formation (4-3-3, 4-4-2, etc.), the
home position for each player and the player type corresponding with each position (wing defender,
central attacker, etc.). A strategic position for a player is determined by taking into account his
home position in the formation and several ball attraction factors which are different for each player
type. The ball attraction factors for one specific player type are defined in the PlayerTypeInfo class
along with several positional restrictions (e.g. a central defender must stay behind the ball).

• PlayerSettings. This component contains the values for several player parameters which influence
the agent’s reasoning process and defines methods for retrieving and updating these values. Most of
the parameters in the PlayerSettings class are threshold parameters for deciding whether a particular
type of action should be performed. These parameters thus define the behavior of the agent.

• Player. This component contains methods for reasoning about the best possible action in a given
situation. Action selection is based on the most recent information about the state of the world as
obtained from theWorldModel component and on the role of the agent in the current team formation.
For making the final decision on whether a particular type of action should be performed, the agent
uses the parameter values which are specified in the PlayerSettings class.

• BasicPlayer. This component contains all the necessary information for performing the agent’s
individual skills such as intercepting the ball or kicking the ball to a desired position on the field.
Note from Figure 4.2 that the BasicPlayer class is a superclass of the Player class. In general,
the Player component decides which action is to be performed and this action is then subsequently
worked out by the BasicPlayer component which uses information from theWorldModel component
to determine an appropriate actuator command. This command is then sent to the ActHandler
component which is responsible for the execution.

• ActHandler. This component is responsible for the execution of actuator commands which it receives
from the BasicPlayer component. Each time when a command arrives, it is stored in one of two
possible lists:

– The Primary Command List can contain only a single command of a type which can be executed
once during a cycle. Examples of such commands are kick, dash, turn, catch and move.

– The Concurrent Command List can contain several commands of a type which can be executed
multiple times during a cycle and concurrently with the commands in the Primary Command
List. Examples of such commands are say, turn neck and change view (see Section 3.4.9).

If the Primary Command List already contains a command by the time that a new command for
this list is received, the old command is overwritten by the new one. A command in the Concurrent
Command List is only overwritten if a new command of the same type is received. This ensures that
the commands in these lists are always based on the most recent information about the state of the
world. During a cycle, the ActHandler component stores each command sent by the BasicPlayer into
the appropriate list until it receives a signal that indicates that the currently stored commands must
be executed. Each command is then converted into a string message which is accepted by the soccer
server and subsequently these messages are sent to the server using the Connection component.

Besides these main components we have also implemented several auxiliary classes which are used by most
components shown in Figure 4.2. The functionality of each of these classes is shortly discussed below.

• Parse. This class contains several static methods for parsing string messages and is mainly used by
the SenseHandler component which handles the processing of messages from the soccer server. The
methods in this class can skip characters up to a specified point and convert parts of a string to
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integer or double values. The main reason for creating this class was because the standard parsing
mechanism available in C++, the sscanf function, was too complex and therefore too slow. This
is mainly caused by the fact that sscanf can only interpret a complete string and not only parts
of it. The methods in our class are more specific however, and can process characters one by one
without having to read the entire string. When one has to read an integer from a string, for example,
all characters representing a digit are processed until a non-numeric character is encountered. We
performed several experiments in which we compared our parsing methods to sscanf and to those
of CMUnited [91]. The results showed that for parsing integers our method achieved a performance
increase of 30.3% over the method used by CMUnited and 68.0% over sscanf; for parsing doubles
the performance increase was 15.4% compared to CMUnited and 85.1% compared to sscanf. Since
the agents receive many messages from the soccer server which all have to be parsed to extract the
relevant information, these methods thus offer a considerable benefit for the processing time.

• ServerSettings. This class contains all the server parameters which are used for the current version
of the soccer server (7.x). Examples are the maximum speed of a player (player speed max) and
the stamina increase per cycle (stamina inc max). When the agent is initialized, the server sends
him a message containing the values for these parameters. This message is then parsed using the
methods from the Parse class and the resulting values are stored in the ServerSettings class.

• SoccerTypes. This class contains enumerations for different soccer types. It creates an abstraction
for using soccer-related concepts (playmodes, referee messages, etc.) in a clean and consistent
way throughout the code. Furthermore, this class contains methods for converting parts of string
messages received from the server to the corresponding soccer types (e.g. ‘(g l)’ to ‘GOAL LEFT’).

• SoccerCommand. This class holds all the necessary information for creating a soccer command that
can be sent to the server. It contains variables denoting the possible arguments (angle, power, etc.)
of the different soccer commands and stores the type of the current command. Only those variables
which are related to the current type will get a legal value. Furthermore, the class contains a method
for converting the command into a string message that will be accepted by the soccer server.

• VecPosition. This class contains an x- and y-coordinate denoting a position (x, y) and defines sev-
eral methods which operate on this position in different ways. Methods are defined for relatively
comparing positions (e.g. isBehind, isBetween, etc.) and for converting relative positions to global
positions and vice versa. This class also allows you to specify positions in polar coordinates (r, φ)
and contains a method for converting polar coordinates (r, φ) to Cartesian coordinates (x, y). Fur-
thermore, the standard arithmetic operators have been overloaded for positions.

• Line. This class contains the representation of a line: a · x + b · y + c = 0. It allows one to specify
a line in different ways: by providing three values (a, b and c), by giving two points on the line, or
by specifying a single point on the line together with an angle indicating its direction. Furthermore,
this class contains methods for determining the intersection point of two lines and for determining
a line perpendicular to the current line that goes through a given point.

• Rectangle. This class contains the representation of a rectangle and contains methods that deal with
rectangles. A rectangle is specified by two VecPosition objects denoting the upper left corner and
bottom right corner respectively. The most important method in this class determines whether a
given point lies inside the current rectangle.

• Circle. This class contains the representation of a circle and contains methods that deal with circles.
A circle is specified by a VecPosition object which denotes its center and by a value denoting its
radius. Methods have been defined for computing the area and circumference of the circle and for
determining the intersection points of two circles as well as the size of their intersection area.
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• Geometry. This class contains several static methods for performing geometrical calculations and
is mainly used by the BasicPlayer component for working out action details. Methods have been
defined for dealing with (possibly infinite) geometric series and for working with the abc-formula.

• Timing. This class contains a timer and methods for restarting this timer and for determining the
amount of wall clock time that has elapsed since the timer was started. It is mainly used for the
timing of incoming messages from the server and for debugging purposes.

• Logger. This class makes it possible to log various kinds of information for debugging purposes and is
used by every component in the system. It allows the programmer to specify the level of abstraction
from which he desires debugging information (see Appendix A.4) and contains an output stream for
writing (usually a file). The Logger uses a Timing object for printing time information in the log.

4.4 Flow of Control

The control flow through the system corresponds to the natural sequence of tasks that the agent has to
perform in each cycle: sense, think and act. The agent first receives sensory information which is used
to create an abstract representation of the world. Based on this representation he thinks about the best
possible action in the current situation and this action is subsequently worked out and executed. It has
already been described in Section 4.2 that we use separate threads for each of these three tasks3. The
Sense thread listens for information from the server and parses the incoming messages. The Think thread
processes this information and comes up with an appropriate action. The Act thread is then responsible
for sending an action command to the server. These threads can be seen to fit into the system architecture
shown in Figure 4.2 in the following way: the Sense thread is represented by the SenseHandler component,
the Act thread is represented by the ActHandler component and the Think thread is represented by the
components in the Skills Layer and Control Layer.

The main advantage of this multi-threaded approach is that it minimizes the delay caused by I/O to
and from the server and this allows the agent to spend the majority of his time thinking about his next
action. With respect to the control flow however, the multi-threaded approach makes the implementation
more complicated since the cooperating threads need to correctly synchronize with each other. The main
problem is caused by the fact that the Sense thread and the Think thread need exclusive access to the
data in the agent’s world model. The Sense thread parses the information from the server and adds it to
the world model. The Think thread then updates the world model based on the new information and uses
it to reason about the next action. However, if both threads would be able to access the data concurrently,
this might cause the Think thread to base its reasoning on an inconsistent world state (e.g. if the Sense
thread is still busy writing to the world model when the Think thread starts updating it). It is therefore
important to ensure that both threads do not access the world model simultaneously. One possible way
to achieve this is by means of a mechanism called a semaphore [2]. A semaphore can be seen as a type
of variable for which two operations have been defined: SIGNAL and WAIT. A semaphore is typically
represented by an integer and a queue. The definitions of the semaphore operations are as follows:

• WAIT(semaphore): if the value of the semaphore is greater than zero then decrement it and allow
the thread to continue, else suspend the thread (i.e. it blocks on this semaphore).

• SIGNAL(semaphore): if there are no threads waiting on the semaphore then increment it; else free
one of the waiting threads which continues at the instruction after its WAIT instruction.

3This idea is based on work described in [52]. The main difference is that we use a more sophisticated agent-environment
synchronization method to determine when to send an action to the server. This is explained in more detail in Chapter 5.
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In order to achieve exclusive access to a shared resource, it is possible to use a binary semaphore (mutex)
whose value is initialized to one. A WAIT(mutex) operation is then executed when a thread wants to
start using the resource and a SIGNAL(mutex) operation is executed once it has finished. Consider the
following example. A thread wants to access a currently unused resource that is protected by a mutex
variable and thus executes a WAIT(mutex) operation. As a result, the value of the mutex is decremented
to zero and the thread can proceed. A second thread now wants to access the same resource and thus also
executes a WAIT(mutex) operation. However, since the value of the mutex now equals zero this thread
blocks and is put into the queue. The same will happen for any other thread that wants to access the
resource while the first thread is still using it. As soon as the active thread finishes using the resource,
it executes a SIGNAL(mutex) operation which causes one of the waiting threads to be freed from the
queue4. By the time that the queue is empty, the SIGNAL(mutex) operation which is executed by the last
active thread will cause the value of the mutex to be restored to one until a new thread wants to access
the resource, etc. Note that it is important to make sure that the active thread cannot block while it has
access to the resource, since this will prevent the other threads from using it and might lead to deadlocks.

Algorithm 4.1 shows a pseudo-code implementation for the three threads used by the agent program.
The world model data are protected by a binary semaphore called lock which has been initialized to one.
The procedure is as follows. When the agent program is started, a process is created which can be seen
as a single thread of execution: the main thread. In our implementation this main thread is what we
call the Think thread. The Think thread starts by creating two other threads, the Sense thread and the
Act thread, which are responsible for performing I/O operations. After this, the Think thread blocks
until it receives a READY signal from the Sense thread to indicate that the world model contains new
information. Meanwhile, the Sense thread waits for new information from the server. Once it receives this
information it determines a time t after which the Act thread must send one or more action commands to
the server and it sets a SEND signal to go off after this time (synchronization with the server is discussed
in Chapter 5). The Sense thread then executes aWAIT operation to obtain the lock and once it has access
it parses the information from the server and adds it to the world model. After this, it releases the lock
by executing a SIGNAL operation and it sends a READY signal to the Think thread to indicate that new
information is available. Note that the Think thread will always wait for this signal before determining
an action, since it is useless to repeatedly do so while the contents of the world model remain the same.

When the READY signal arrives the Think thread executes WAIT, updates the agent’s world model and
determines the next action. Subsequently, it sends the appropriate actuator commands to the Act thread
and releases the lock by executing a SIGNAL operation. By the time the SEND signal goes off, the Act
thread converts the action commands in the Primary and Concurrent Command Lists (see Section 4.3) to
string messages which are accepted by the server and it sends these messages. Note that no semaphores
are used to protect the command lists since the Act thread must always be granted immediate access to
read these lists once it has received a SEND signal. Also note that a new action is determined each time
when sensory information arrives from the server. It is thus not the case that the agent determines a
plan consisting of a sequence of actions over a number of cycles5. Instead, the agent determines a new
actuator command in each cycle depending on the current world state. This form of coordination between
reasoning and execution is referred to as weak binding [116] and ensures that the Primary Command List
will always contain a command that is completely based on the most recent information about the world.

The control flow through the system can be visualized by an UML sequence diagram. Such a diagram
describes the interaction between different objects in terms of an exchange of messages over time. A

4Several policies exist for scheduling the wait queue: first-come-first-serve, highest-priority-first, etc.
5Note that this would seriously complicate the way in which the command lists in the ActHandler component should be
organized. One would need a way to determine whether the previously chosen plan is still useful at the current time and
if not in which way the command lists should be adapted. Nevertheless, several soccer simulation teams from recent years
have been reported to use such methods [13, 90].
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{Think thread}
Create Sense thread
Create Act thread
while server is alive do

block until READY signal arrives or 3 seconds have passed
if 3 seconds have passed then

server is alive = false
else
WAIT(lock)
update world model
determine next action
send commands to Act thread
SIGNAL(lock)

end if
end while

{Sense thread}
while true do

block until server message arrives
determine send time t for Act thread // synchronization: see Chapter 5
set SEND signal to go off at time t
WAIT(lock)
parse server message and send it to world model
SIGNAL(lock)
send READY signal to Think thread

end while

{Act thread}
while true do

block until SEND signal arrives
convert commands to string messages
send messages to server

end while

Algorithm 4.1: Pseudo-code implementation for the Think, Sense and Act threads.

sequence diagram has two dimensions: the vertical dimension represents time and the horizontal dimension
represents different objects. The presence of an object over time is shown as a vertical dashed line which
is called a lifeline. The time that an object needs to perform a certain task (either directly or through a
subordinate procedure) is referred to as an activation. An activation is shown as a tall rectangle whose top
is aligned with the starting time of the corresponding task and whose bottom is aligned with its completion
time. Communication between two objects is called a stimulus and is depicted by a horizontal arrow
pointing from the lifeline of one object to the lifeline of another object. Different kinds of communication
are specified by different types of arrows. A solid arrow with a filled arrowhead denotes a procedure
call. The return of such a procedure call is indicated by a dashed arrow with again a filled arrowhead.
Asynchronous communication6 between two objects is represented by a solid line with a half arrowhead.

Figure 4.3 shows an UML sequence diagram for one simulation cycle in which the agent receives both
physical and visual information from the server. Note that in both cases the same sequence of actions is

6An object resumes its tasks immediately after sending an asynchronous message without waiting for a response.
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Figure 4.3: UML sequence diagram showing the interaction between different objects during a single
cycle in which the agent receives both physical and visual information from the server.

performed. Activation starts when the SenseHandler receives a new message from the server containing
physical information. This information is added to the agent’s WorldModel after which the SenseHandler
signals the Player that new information is available. The Player then updates the WorldModel and
determines the next command which is sent to the ActHandler. After this, the Player blocks again until
it is notified for a second time by the SenseHandler that new (visual) information has arrived. This
happens midway through the diagram and causes the same sequence of actions to be performed. Towards
the end of the cycle the ActHandler is then signaled to send the current command to the server. In
this example, the command will be based on the information contained in the second message. It is also
possible however, that the ActHandler is signaled while the second message is still being processed. In
this case, the command sent to the server will be based on physical information (first message) which is
always received at the start of a cycle. By the time that the ActHandler is signaled, a command will thus
always be available even if the agent does not receive visual information during a cycle. In this way the
agent never misses an opportunity to act.
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Chapter 5

Synchronization

Synchronization between an agent and the environment he resides in is an important issue for the develop-
ment of any agent. A good synchronization method can greatly enhance the agent’s performance over time
and in case of a team of agents it has a significant influence on the performance of the team. In this chapter
we discuss the synchronization problem for the soccer server simulation environment and we present a
comparative analysis of several agent-environment synchronization methods. The best of these methods
has been used by the agents of the UvA Trilearn 2001 soccer simulation team. It contains a flexible syn-
chronization scheme which provides an optimal synchronization between our agents and the simulation
environment. Furthermore, this method guarantees that the action chosen by an agent is always based
on the latest sensory information from the server when possible. The chapter is organized as follows. In
Section 5.1 we present an introduction to the problem of synchronization with the soccer server. Various
aspects concerning the timing of incoming messages from the server are discussed in Section 5.2. In Sec-
tion 5.3 we then introduce several agent-environment synchronization methods. An experimental setup
for comparing these methods is described in Section 5.4 and the results of the comparative experiments
are presented in Section 5.5. Finally, Section 5.6 contains a number of concluding remarks.

5.1 Introduction to the Problem of Synchronization

The RoboCup Soccer Server is a client-server application in which each client communicates with the
server via a UDP socket. The server is responsible for executing requests from each client (i.e. agent)
and for updating the environment accordingly. At specific intervals it also sends sensory information
(visual, auditory and physical) about the state of the world to each agent. The agents can then use this
information to decide which action they want to perform next. The soccer server provides a pseudo real-
time simulation which works with discrete time intervals known as ‘server cycles’. In the current version of
the server (7.x) each cycle lasts for 100ms. During this period, clients can send requests for player actions
which are collected by the server. It is only at the end of a cycle however, that the server executes the
actions and updates the environment. The server thus uses a discrete action model. Note that each agent
can only execute one primary action command (see Section 3.4.9) in each simulation cycle. When he sends
multiple primary commands during a cycle, the server randomly chooses one for execution and discards
the others. This situation will be referred to as a clash and must clearly be avoided. On the other hand,
sending no request during a cycle will mean that the agent misses an opportunity to act and remains idle.
This situation will be referred to as a hole and is also undesirable since in real-time adversarial domains
this usually leads to the opponents gaining an advantage.

57
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An important issue for the development of a player client is the synchronization with the soccer server.
Since actions that need to be executed in a given cycle must arrive at the server during the right interval,
a good synchronization method for sending actions to the server has a major impact on the agent’s
performance. The synchronization problem is not a trivial one however, due to the fact that the arrival
time of messages (either from or to the server) is influenced by several factors such as the available resources
(CPU-time, memory, etc.) and the speed and reliability of the network. Furthermore, determining the
right moment to send an action is complicated by the fact that the agent only has explicit information about
the duration of a cycle and not about its starting time. An additional problem related to synchronization
is that sensing and acting in the soccer server are asynchronous. In the current server version (7.x)
agents can send primary action commands to the server once every 100ms, but they only receive visual
information at 150ms intervals1. Furthermore, physical information arrives every 100ms and auditory
information is received at random. The challenge for the agents is to try to base their choice of action in
a given cycle on the latest sensory information about the environment, while still managing to send the
command to the server before the end of the cycle. In the ideal case, the agent can choose an action based
on visual information about the current state of the world. This is not always possible however, since
visual information is not received in every cycle and sometimes arrives too late to be able to determine
an action before the cycle finishes. Furthermore, there is no specified relationship between the start of a
cycle and the arrival times of sensory messages. Finding an optimal balance between the need to obtain
information about the world and the need to act as often as possible is thus not a straightforward task.

In summary, the synchronization problem boils down to determining the optimal moment in each cycle to
send an action to the server. In general, this is the latest possible moment which ensures that the action
request will reach the server in time and which maximizes the chance of basing the chosen action on visual
information about the current world state. A bad synchronization method will lead to missing action
opportunities or to action choices based on old information and this will harm the agent’s performance
significantly. Due to the uncertain nature of many aspects of the problem, we will follow an empirical ap-
proach throughout this chapter by experimentally comparing different agent-environment synchronization
alternatives. The proposed solutions are partly based on ideas introduced in [13].

5.2 Timing of Incoming Messages

At specific intervals the soccer server sends each agent various types of sensory information about the
state of the environment. For the synchronization problem two types of server messages are important:

• sense body messages arrive every 100ms and provide the agent with physical information about
himself (stamina, etc.). In the remainder of this chapter these will be referred to as sense messages.

• see messages arrive every 150ms and provide the agent with visual information about the world.

In order to gain a better understanding of the sychronization problem it is very important to recognize the
exact relationship between these two types of messages. This knowledge serves as a basis for the definition
of the synchronization methods that will be presented in Section 5.3. Since this relationship depends on
many uncertain factors (see Section 5.1) it cannot be derived directly from the server implementation and
one has to resort to empirical methods. To this end, we created a simple test program called message times
which shows the arrival times of the various messages and the time differences between them. This enables
one to see how the intervals between consecutive messages correspond to the interval settings (100ms and

1Here we ignore the possibility of trading off the frequency of visual messages against the quality of the given information
and the width of the player’s view cone. See Section 3.2.1.
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150ms) specified in the server manual (see [32]). Two sample outputs of this program are shown below.
Note that the second output was generated after the server was restarted.

...

sense (100): 6.61 (0.10), previous msg: 6.51

see (100): 6.61 (0.15), previous msg: 6.46

sense (101): 6.72 (0.11), previous msg: 6.61

see (101): 6.76 (0.15), previous msg: 6.61

sense (102): 6.82 (0.10), previous msg: 6.72

sense (103): 6.92 (0.10), previous msg: 6.82

see (103): 6.92 (0.16), previous msg: 6.76

...

...

sense (35): 2.03 (0.11), previous msg: 1.92

see (35): 2.07 (0.16), previous msg: 1.91

sense (36): 2.13 (0.10), previous msg: 2.03

see (36): 2.22 (0.15), previous msg: 2.07

sense (37): 2.23 (0.10), previous msg: 2.13

sense (38): 2.33 (0.10), previous msg: 2.23

see (38): 2.37 (0.15), previous msg: 2.22

...

Each of the above lines has the following format:

type (i) : ttype,n (ttype,n − ttype,n−1), previous msg: ttype,n−1

where

• type is the type of the message, i.e. see or sense

• i is the simulation cycle in which the message arrived (this number is contained in the actual message)

• ttype,n is the arrival time in seconds of the nth message of type type relative to the starting time of
the player

• ttype,n − ttype,n−1 is the time difference in seconds between the arrival of the nth message of type
type and the arrival of the previous message of the same type

• ttype,n−1 is the arrival time in seconds of the previous message of the same type

It can be concluded from the output that the actual time differences between successive messages of the
same type correspond closely to the interval settings in the server specification (0.1 seconds for sense
messages and 0.15 seconds for see messages). Nevertheless, several small differences are visible. Every
output that has been generated by the message times program has shown that the intervals between
consecutive messages of the same type are sometimes longer than the specified length but never shorter.
It is most likely that this is caused by network traffic. In each case however, we found that the relationship
between the cycle number i and the message count n for a certain message type was as would be expected
from the server specification: for sense messages it held that n = i and for see messages n equaled d 2

3 · ie
or b 23 · ic depending on the arrival time of the first see message. The fact that the ratio between n and i
remains correct despite the occasionally higher values of ttype,n − ttype,n−1 indicates a possible elasticity
of the server cycles, i.e. the duration of a cycle may not always be 100ms but can exceed this value on
some occasions. We will come back to this later.
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A second important conclusion that can be drawn from the output generated by themessage times program
is that during a cycle sense messages always arrive before see messages. A possible explanation for this
is that the arrival of a sense message somehow indicates the start of a new cycle. We decided to further
investigate this matter since knowing the starting time of a simulation cycle was obviously very important
for finding an optimal solution to the synchronization problem. Since the interval between consecutive
sense messages is equal to the duration of a cycle, it is clear that there must be a fixed relationship
between the start of a cycle and the arrival of a sense message. In order to gain a better insight into this
relationship we created a test program called send time for command for which a pseudo-code is shown
in Algorithm 5.1. The program starts up a player and waits for a sense message from the server which
arrives during a cycle number divisible by ten (this can be determined by looking at the time index in
the message). As soon as such a message arrives, the program waits for a specific number of milliseconds
before sending a turn command to the server. The waiting time is then incremented by 1ms and the loop
repeats itself. For reasons that will become clear later the argument supplied to the turn command equals
the number of milliseconds between the arrival of the sense message and the send time of the command.
This waiting time has been implemented in the form of a signal that is set to go off after a specific number
of milliseconds. However, the current implementation of signals (and other blocking functions) in UNIX
and Linux is based on the normal kernel timer mechanism which has a resolution of 10ms [2, 105]. Waiting
times represented by signals will thus be rounded upwards to the first multiple of 10ms. This means, for
example, that there is no difference between a waiting time of 81ms or 90ms. Nevertheless, we have chosen
to increment the waiting time by 1ms after each iteration of the loop in order to make the program more
general for different timer resolutions and to obtain a larger amount of useful test results.

It is possible to run the soccer server using an option which causes it to record all the commands sent by
each client together with the numbers of the cycles in which these commands were received by the server.
After running the send time for command program this server log can be used to check for which waiting
times the turn commands still arrived at the server during the same cycle. This will give an indication
of the relationship between the arrival of a sense message and the start of a cycle. Part of the server log
after running the send time for command program on a quiet stand-alone machine2 is shown below.

....

160 Recv Team_L_1: (turn 96)

170 Recv Team_L_1: (turn 97)

180 Recv Team_L_1: (turn 98)

190 Recv Team_L_1: (turn 99)

200 Recv Team_L_1: (turn 100)

211 Recv Team_L_1: (turn 101)

221 Recv Team_L_1: (turn 102)

231 Recv Team_L_1: (turn 103)

241 Recv Team_L_1: (turn 104)

...

The server log format is simple. Each line shows the cycle time at which the server received a command
followed by the player that sent the command (in this case player number one from the left team) followed
by the command that he sent. Since the argument supplied to the turn equals the waiting time, the output
clearly shows for which values the command still arrived at the server in the same cycle. All commands
were sent at cycle times divisible by ten and for waiting times up to 100ms the server received them before
the end of the cycle. When the waiting time exceeded 100ms however, the commands arrived in the next
cycle. Note that these results can vary greatly depending on the state of the system at the time of the
experiment. We have therefore repeated the experiment 1,000 times for different system configurations.
For each configuration we took three factors into account: (1) the client program was either running

2AMD Athlon 700MHz with 512MB running Debian Linux 2.2.17
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for wait time = 81 to 120 do
sent message = false
while sent message == false do

wait for server message
if type(message) == sense and time index(message) mod 10 == 0 then

wait for wait time milliseconds
send a (turn wait time) command to server
sent message = true

end if
end while

end for

Algorithm 5.1: Pseudo-code implementation for the send time for command program.

locally or remotely, (2) the server machine was quiet or busy (i.e. other large processes were running on
it) and (3) the client machine was quiet or busy. The following configurations were tested:

• Configuration 1. The experiment is performed using only one machine: both the server and the client
program are running on the same machine with no other large processes running. This configuration
is used to test the optimal situation for client-server interaction.

• Configuration 2. The experiment is performed using two machines on the same network: one for the
server and one for the client program. No other large processes are running on either machine. This
configuration is used to test the difference in performance when a network connection is introduced.

• Configuration 3. The experiment is performed using two machines on the same network: one for
the server and one for the client program. During the experiment, a complete team consisting of
11 player clients is running on the server machine while no other large processes are running on the
client machine. This configuration is used to test the difference in performance when other processes
are running on the server machine.

• Configuration 4. The experiment is performed using three machines on the same network: one for
the server, one for 11 players belonging to the left team and one for 11 players belonging to the right
team. This configuration is used to test the most common situation where the server and each team
run on different machines and where the server has to send messages to all 22 players and vice versa.

Table 5.1 shows the results of the experiments for the different configurations. Note that due to the
system timer resolution of 10ms the results for equivalent send times have been joined together. This
means that each percentage is based on 10,000 samples. The results show that for the first configuration
the commands almost always arrive at the server during the same cycle for send times up to 100ms after
the arrival of a sense message. The key observation at this point is that this means that there must be
at least 100ms between the arrival of a sense message and the beginning of the next cycle. Since the
specified duration of a simulation cycle is also 100ms, it can thus be concluded that the arrival of a sense
message coincides with the start of a cycle. When the client program runs on a remote machine (second
configuration) the results show that the percentage of message arrivals in the same cycle is slightly lower
as a result of network traffic. Even in this case however, most of the commands sent up to 100ms after
the arrival of a sense message still reach the server during the same cycle. The results for the third
configuration (busy server) are surprising: even commands sent up to 120ms after the arrival of a sense
message still reach the server before the end of the cycle in about 30% of the cases. This implies that in
some cases the duration of a cycle exceeds the specified value of 100ms which indicates a possible elasticity
of the cycle length as mentioned earlier. This effect can be explained as follows. The additional client
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Configuration Time (ms)
nr client server client 81-90 91-100 101-110 111-120

1 local quiet quiet 100.00% 99.30% 0.03% 0.01%
2 remote quiet quiet 100.00% 96.80% 0.00% 0.00%
3 remote busy quiet 100.00% 96.78% 74.54% 31.32%
4 remote quiet busy 99.70% 79.94% 0.00% 0.00%

Table 5.1: Percentage of message arrivals in the same cycle for different system configurations and
different send times. Other configurations were not relevant for the problem at hand and were therefore
not tested.

processes running on the server machine all consume a certain amount of CPU-time. As a result, there
is not enough CPU-time left for the server to handle all the action requests and update the environment
within the specified time. Since the server will only initiate a new cycle once it has finished processing the
requests from the previous one, this means that a cycle can sometimes last longer than the specified 100ms
time window. Note that it is not very likely that this will happen during official competitions3, since the
fourth configuration then usually applies: the server runs on a separate machine with both teams running
on remote machines. The results show that in this case almost all the commands sent up to 90ms after the
arrival of a sense message reach the server before the end of the cycle. However, when the waiting time
equals 100ms, 20% of the commands do not reach the server in time. Compared with the results for the
second configuration, this performance decrease can be attributed to the extra CPU-load and increased
network traffic caused by the additional player clients running on the client machine.

The output of the message times program shown at the beginning of this section demonstrates that there is
an almost fixed relationship between the arrival times of see messages and sense messages. Furthermore,
it is visible that this relationship is different after a restart of the soccer server. The first part of the
output shows that see messages arrive either at the same time as sense messages or halfway between two
sense messages. In the second output however, see messages arrive either 40ms or 90ms after a sense
message. In general, since the intervals between consecutive sense and see messages are 100ms and 150ms
respectively, the arrival times of both types of messages will describe a pattern that is repeated every
300ms (least common multiple of 100 and 150) and thus every three cycles. Clearly, see messages will only
arrive in two out of these three cycles: once in the first half of the cycle and once in the second half of the
cycle. Besides this, the only thing that we can be certain of is that the first see message will arrive within
150ms after the first sense message. Assume that δ denotes the time difference in milliseconds between
the arrival of a sense message and the arrival of a see message in the first half of the same cycle, i.e.

δ = (tsee,1 − tsense,1) mod 50 (5.1)

The arrival times of see messages relative to the start of a cycle (and thus to the arrival times of sense
messages) then repeat themselves as follows:

pattern = {δ, δ + 50,−} (5.2)

where ‘−’ denotes that no visual information arrives during a cycle. Note that the value for δ cannot be
known in advance and will be different each time when the server is started. In order to gain a deeper
insight into the possible values for δ and into the distribution of these values, an experiment was performed
where the server and a single player were restarted 1,000 times and in which on each occassion the time
was recorded of the first see message that arrived during the second half of a cycle (i.e. δ + 50). This was
done for each of the four configurations defined earlier. After this, we plotted the various (δ + 50) values

3It can be of influence however, when performing tests in an environment where not enough machines are available.
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(b) remote client, quiet server, quiet client
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(c) remote client, busy server, quiet client
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Figure 5.1: Histograms showing the distributions of see message arrivals in the second half of a cycle.

for each server restart and transformed these plots into corresponding histograms in order to get a better
view of the distribution of arrival times for each configuration. These histograms are shown in Figure 5.1.

Figure 5.1(a) shows that the distribution of see message arrivals in an ideal situation is all but uniform.
The arrival times tend to concentrate around multiples of 10ms which will be referred to as ‘time lines’.
Note that this is probably caused by the limited timer resolution of the system4. It seems that the
majority of see messages arrives 50ms after a sense message, i.e. midway through the cycle. Furthermore,
it is visible that the server implementation is apparently such that a see message never arrives after
exactly 70ms. Figure 5.1(b) shows the situation where the agent program runs on a remote machine.
In this case we can see that due to the network traffic introduced by this configuration a small number
of see messages does not arrive exactly at a multiple of 10ms. Furthermore, the arrival times are now

4Note that the timer resolution plays no role for our own measurements of (δ+50) since we only need to compare the arrival
times of see and sense messages. For this we do not need signals (i.e. no timers) since we can simply use the wall clock time.
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more evenly distributed over the time lines, although the majority still arrives midway through the cycle.
However, when a complete team consisting of 11 players is running on the server machine, the time lines
become less explicit and the arrival times start to increase (see Figure 5.1(c)). This is caused by the extra
CPU-load on the server machine as well as the fact that the server now has to send messages to 12 players
instead of one. Finally, the results for the fourth configuration are slightly surprising as can be seen in
Figure 5.1(d): the time lines have disappeared completely. Recall that in this case the experiment has
been performed using three machines on the same network: one for the server and one for each team. It
is likely that the effect which is visible in Figure 5.1(d) is caused by the increased network traffic resulting
from this configuration. In addition, the arrival times will also be influenced by the extra CPU-load on
the client machine which now receives server messages for 11 players instead of one. Note that since the
server runs on a separate machine, the arrival times are again biased towards the midpoint of a cycle.

5.3 A Number of Synchronization Alternatives

In Section 5.2 we discussed several important issues concerning the timing of incoming messages. These
issues are closely related to the synchronization problem and understanding them is a prerequisite for the
design of a successful synchronization scheme. In this section we will describe four different synchronization
methods which can be seen as potential solutions to the synchronization problem. The naming convention
for these methods is based on the categorization of scheduling schemes introduced in [13]. Firstly, a timing
mechanism will be called either internal or external. Internal timing can be thought of as a biological
clock or regulation mechanism that is realized by the use of system timing routines. External timing on
the other hand can be seen as the observation of change in the environment. In the soccer server domain
this is expressed by the arrival of sensory information. Furthermore, windowing refers to the specification
of a time window (‘window of opportunity’) that defines the amount of time that the agent can use to
determine his next action. As soon as the time window expires he must send a command to the server.

5.3.1 Method 1: External Basic

A naive solution to the synchronization problem is to only perform an action when a visible change in
the environment occurs. This means that the agent will only send an action command to the server after
receiving a see message. Algorithm 5.2 shows a pseudo-code for this synchronization method to which we
will refer as External Basic. An advantage of this approach is that it is linear (single-threaded): the agent
waits for visual information, determines an action, sends a command, waits for visual information, etc.
In this way, the agent can always base his next action on the most recent visual information about the
world. Furthermore, during cycles in which no visual information is received he does not need the ability
to predict the current world state using perceptions from the past. However, since visual information
only arrives in two out of every three cycles (see Section 5.2), the agent will utilize only about 67% of his
action opportunities. During the remaining 33% of the cycles the agent remains idle and this will slow him
down significantly (e.g. when he is running after the ball). This is a big disadvantage since in real-time
adversarial domains it usually allows the opponents to gain the initiative. Figure 5.2 shows an example
of a situation in which the External Basic synchronization scheme is applied. In this figure time runs
horizontally from left to right. Different kinds of arrows are used to indicate different types of messages
from the server (top) to the agent (bottom) and vice versa. The example shows that the server sends a
sense message to the agent at the beginning of each cycle which the agent receives a fraction later. As
soon as the agent receives a see message he determines his next action and sends an action command back
to the server. Note that no actions are sent in cycles 3 and 6 since the agent has not received any visual
information in these cycles. Also note that in the given example the commands all arrive at the server
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before the end of the cycle (i.e. in time to be executed in the next cycle). This is caused by the fact that
the agent receives see messages relatively early in a cycle which gives him enough time to determine an
action and send it to the server. In general however, it is possible that see messages arrive later and as a
result the action commands might not reach the server before the next cycle starts.

while server is alive do
wait for see message
determine next action
send action command to server

end while

Algorithm 5.2: Pseudo-code for the External Basic synchronization method.
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Figure 5.2: Synchronization example using the External Basic scheme.

5.3.2 Method 2: Internal Basic

Another possible solution to the synchronization problem is to send an action to the server every 100ms
using some kind of internal clock to count these intervals. This approach will be referred to as Internal
Basic and is shown in Algorithm 5.3. It has been implemented by installing a mechanism that sends a
signal at exact 100ms intervals. Each time when such a signal arrives it is processed by a signal handler
which determines an action and sends it to the server. Since the length of the interval equals the duration
of a cycle, this method has the advantage that the server will receive a command in each cycle. The agent
will thus utilize every action opportunity. However, due to the internal nature of the timing mechanism
it cannot be known in which part of a cycle the signal arrives. In the most ideal situation, the signal will
arrive towards the end of a cycle since this increases the probability that the agent can determine an action
based on visual information from that same cycle. In the worst case however, the signal arrives at the
beginning of a cycle and the agent will then always choose an action based on old visual information from
the cycle before. Figure 5.3 shows an example of a situation in which the External Basic synchronization
scheme is applied. The figure shows that consecutive action commands arrive at the server in adjacent
cycles, i.e. no action opportunities are missed. Actions are chosen at 100ms intervals which are in no

{Main thread}
install signal that comes every 100ms

{Signal handler − called when signal arrives}
determine next action
send action command to server

Algorithm 5.3: Pseudo-code for the Internal Basic synchronization method.
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way related to the arrival of sensory information from the server. Note that in the given example the
action commands are only based on current visual information if the see message arrives in the first half
of a cycle. This means that in two out of every three cycles the command will be based on old visual
information about the state of the world.

cycle 1 cycle 3 cycle 4 cycle 5 cycle 6cycle 2

100 msec
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Figure 5.3: Synchronization example using the Internal Basic scheme.

5.3.3 Method 3: Fixed External Windowing

We have seen in Section 5.3.2 that sending an action to the server every 100ms has the advantage that
no action opportunities will be missed. Clearly, the method described in that section can be improved by
choosing a more appropriate time to send an action to the server. The problem with the Internal Basic
scheme is that the time of sending is not related to the arrival of server messages which might lead to
action choices based on old world state information. However, by using an external timing mechanism it
is possible to relate the send time of the command to the start of a cycle. This can be done in such a way
that there is a high probability that the agent can choose an action based on current visual information,
while there is enough time for the action command to reach the server before the end of the cycle. These
ideas have been incorporated into the Fixed External Windowing synchronization scheme. This method is
based on the assumption that the arrival of a sense message indicates the start of a new cycle (see Section
5.2). Each time when a sense message arrives from the server, a signal is set to go off 90ms later5. During
this time, the agent will first determine an action based on this sense message and on the most recent see
message. However, if another see message arrives before the signal goes off, the agent can use the new
information to make a better choice. As soon as the signal goes off, the currently chosen action is sent
to the server. This is an example of an anytime algorithm (see [23]). Note that the send time of 90ms is
based on the results presented in Table 5.1. These show that for the fourth configuration (which is most
common) almost all commands sent after exactly 90ms still reach the server before the end of the cycle.

The main advantage of this approach is that during cycles in which a see message arrives it very often
allows the agent to choose his next action based on visual information about the current world state. In
addition, it is not very likely that action opportunities will be missed since a send time of 90ms gives
a high probability that a command will reach the server before the end of the cycle. Experiments have
shown that choosing an action on average takes about 5ms and it is thus only when a see message arrives
more than 85ms after the start of a cycle that the agent will not have enough time to choose an action
based on the new information. A disadvantage of this method is that the commands reach the server at
the very end of a cycle leaving only a small margin to the start of the next one. This makes the approach
sensitive to temporary increases in CPU-load or network traffic since these might cause the command to
reach the server too late. This will have a negative impact on the synchronization in two ways. Firstly, the
current cycle will be a hole since the agent misses an opportunity to act. Secondly, a clash will occur in

5Note that due to the limited timer resolution of the system any value between 81ms and 90ms will produce the same result.
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the subsequent cycle since the server receives two action commands6. The first of these two commands is
based on information from the wrong cycle and since the server randomly chooses one for execution there
is a 50% chance that this action will actually be performed while the ‘better’ action will be discarded.

A pseudo-code implementation for the Fixed External Windowingmethod is shown in Algorithm 5.4. Note
that the actual implementation becomes slightly more difficult as compared to the previous methods, since
two threads are now needed: one to determine an action based on the latest see message and one for sending
a command to the server after the 90ms time period has expired. Note that the first of these threads
must make sure that a command is always available when the signal goes off. This command will either
be based on visual information from the same cycle or on old information from the previous cycle. Figure
5.4 shows an example of a situation in which the Fixed External Windowing scheme is applied. The figure
shows that each time when sensory information is received a new action is determined. As soon as the
signal goes off, the most recently chosen command is sent to the server. Note that in the given example
the agent always succeeds in sending an action based on current visual information about the world when
this is possible (i.e. when a see message arrives in that particular cycle).

{Main thread}
while server is alive do

block until server message arrives
if type(message) == sense then

set signal to go off after 90ms
end if
current action = determine next action

end while

{Signal handler (Act thread) − called when signal arrives}
send current action to server

Algorithm 5.4: Pseudo-code for the Fixed External Windowing synchronization method.
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Figure 5.4: Synchronization example using the Fixed External Windowing scheme.

5.3.4 Method 4: Flexible External Windowing

Two important characteristics of a good synchronization method are to send an action to the server in
each cycle and to base this action on the most recent world state information when possible. The method
described in Section 5.3.3 exhibited both characteristics, but had the problem that the fixed send time of

6Assuming that the command in the subsequent cycle reaches the server in time.
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90ms carried the risk of causing holes and clashes since it lay close to the end of a cycle. It is possible
to improve this policy by making the send time flexible depending on the arrival times of see messages7.
Equation 5.2 shows that the arrival times of see messages form a pattern that repeats itself every three
cycles. Due to the repetitive nature of this pattern it is possible to predict in each cycle whether a see
message will arrive or not, and if so, in which half of the cycle it will come. For example, if no see message
arrived during a cycle then the agent knows that one will come in the first half of the next cycle and in the
second half of the cycle after that. This information can be used to determine a more appropriate send
time for the given situation. Clearly, there is no need to postpone sending a command until 90ms after the
start of a cycle when one knows that no additional visual information will come from the server before this
time. In cases where a see message will arrive during the first half of a cycle or will not arrive at all, it is
sensible to use a safer value for the send time in order to make sure that the command will reach the server
before the end of the cycle. A possible value is 70ms since this virtually ensures a timely arrival and gives
the agent more than enough time to choose an action. The send time will only remain at 90ms in cycles
during which a see message will arrive somewhere in the second half of the cycle. In this way, the agent will
often be able to use this see message for determining his next action while the action command still has a
good chance to reach the server in time. Note that this method can be further improved by immediately
sending an available command if this command is based on visual information from the current cycle. In
this case, the agent can be sure that he will not receive any more see messages during that cycle and there
is thus no need to wait any longer. This will especially improve the performance when see messages arrive
during the second half of a cycle, since the risky send time of 90ms can then often be avoided.

The ideas described above have been incorporated into the Flexible External Windowing synchronization
scheme which is shown in Algorithm 5.5. It is important to realize that we have deliberately chosen not to
fix the send time exactly to the arrival times of see messages since this could cause problems when during
play the time differences between see and sense messages would change for some reason. Instead, the send
time depends on the part of the cycle in which a see message will arrive. Also note that the pattern index
indicating the current position in the δ-pattern (see Equation 5.2) is always reset when a see message
arrives during the first half of a cycle (i.e. no see message arrived in the previous cycle). This makes the
proposed solution more robust since it ensures that the execution will remain correct if for some reason
two cycles would pass without receiving visual information. Figure 5.5 shows an example of a situation in
which the Flexible External Windowing scheme is applied. The figure shows that when visual information
arrives a command is determined and sent to the server immediately. Furthermore, during cycles in which
no see messages are received the command is sent relatively early to avoid the risk of a hole.

cycle 1 cycle 3 cycle 4 cycle 5 cycle 6cycle 2

flexible time

PSfrag replacements

l
d
lp
lb
p
p′

f
g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d)
dr
dl
sl
sr

3σ(dl)
3σ(dr)

20 meters

PSfrag replacements

l
d
lp
lb
p
p′

f
g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d)
dr
dl
sl
sr

3σ(dl)
3σ(dr)

20 meters

determine actionsend commandsee messagesense message

PSfrag replacements

l
d
lp
lb
p
p′

f
g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d)
dr
dl
sl
sr

3σ(dl)
3σ(dr)

20 meters

Figure 5.5: Synchronization example using the Flexible External Windowing scheme.

7This differs from the method described in [13] where a sequence of commands that have to be executed in the forthcoming
cycles is stored in a queue and where the send time depends on the state of this queue (i.e. whether it is empty or not).
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{Main thread}
pattern index = 0 // 0 = see in 1st half, 1 = see in 2nd half, 2 = no see
while server is alive do

block until server message arrives
if type(message) == sense then

sent message = false // new cycle starts
if pattern index == 0 or pattern index == 2 then

set signal to go off after 70ms
else if pattern index == 1 then

set signal to go off after 90ms
end if
pattern index = (pattern index + 1) mod 3

else if type(message) == see then
if no see message arrived in the previous cycle then

pattern index = 1 // reset pattern: see in 2nd half in next cycle
end if

end if
current action = determine next action
if type(message) == see and sent message == false then

set signal to go off immediately
end if

end while

{Signal handler (Act thread) − called when signal arrives}
if sent message == false then

send current action to server
sent message = true

end if

Algorithm 5.5: Pseudo-code for the Flexible External Windowing synchronization method.

5.4 An Experimental Setup for Comparing the Alternatives

To compare the synchronization alternatives presented in Section 5.3, an experiment was performed which
produced an empirical measurement of the success of each method. In this experiment a player was
placed on the field for a period of 99 cycles during which he sent actions to the server using one of the
synchronization methods discussed earlier. Along with this player, 10 additional players were determining
and performing actions on the same machine whereas the server and another team consisting of 11 players
were running on two separate machines. This was done to create a situation that was similar to a real
match. The procedure of choosing an action was simulated by blocking the client process for a period
of 10ms. This was quite high as compared to the time actually needed, but a restriction caused by the
limited timer resolution of the system. The command sent in each cycle depended on the arrival time of
the last see message. If it was possible to base the command on a see message that arrived during the
same cycle (taking into account the 10ms needed to choose the action) the player sent a dash command
to the server. However, if the command had to be based on visual information from the previous cycle
the player sent a turn command. The argument supplied to both commands always equaled the cycle
number of the cycle in which the command was sent. Afterwards, this made it possible to check in the
server logfile whether the command had been received by the server in the same cycle. This experiment
was repeated 250 times for each synchronization method. Note that in order to obtain a good indication
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of the success of each method, it is necessary to perform the experiment multiple times since the arrival
times of see messages will be different when the server is restarted. A duration of 99 cycles for each trial
was chosen for two reasons. In the first place this number is divisible by three and since the arrival times
of see messages describe a pattern that is repeated every three cycles (see Equation 5.2) this means that
the arrival times will be equally distributed. Furthermore, 99 cycles seemed long enough to give a good
indication of a method’s performance on that particular trial. After each trial the server logfile was parsed
to compute several statistics for the method used. In the subsequent discussion we will use the following
notation to explain the results:

• δi is a boolean function that returns 1 when the player sent a dash command in cycle i and 0
otherwise.

• τi is a boolean function that returns 1 when the player sent a turn command in cycle i and 0
otherwise.

• αi is a function that returns the argument of the first command received by the server in cycle i;
this function is undefined when no command is received in cycle i.

• γi is a function that returns the number of commands received by the server in cycle i.

• Θ(β) is a function that returns 1 when the boolean expression β is true and 0 otherwise.

Each experiment was performed in soccer server version 7.10 using three AMD Athlon 700MHz/512MB
machines running Debian Linux 2.2.17. In the sequel we will refer to an action that was based on current
visual information as an optimized action, whereas an action based on old visual information will be called
unoptimized. In this experiment a dash command is thus an optimized action, whereas a turn command
is unoptimized. For each method the following statistics were extracted from the server log after a trial:

• The total number of cycles n.

• The number of optimized actions received by the server in the correct cycle, i.e.
∑n

i=1 Θ(δi∧αi = i).
These actions have been based on a see message arriving in the current cycle and have reached the
server before the end of this cycle. This is obviously the ideal situation.

• The number of optimized actions received by the server in the wrong cycle, i.e.
∑n

i=1 Θ(δi ∧αi 6= i).
These actions have been based on a see message arriving in the current cycle, but only reached the
server at the start of the next cycle.

• The number of unoptimized actions received by the server in the correct cycle, i.e.
∑n

i=1 Θ(τi∧αi = i).
These actions have been based on a see message arriving in the previous cycle (either because no
see message arrived in the current cycle or because it arrived too late) and have reached the server
before the end of the current cycle.

• The number of unoptimized actions received by the server in the wrong cycle, i.e.
∑n

i=1 Θ(τi∧αi 6= i).
These actions have been based on a see message arriving in the previous cycle and only reached the
server at the start of the next cycle.

• The number of holes, i.e.
∑n

i=1 Θ(¬δi ∧ ¬τi). This is the number of cycles in which the server did
not receive an action command and thus equals the number of missed action opportunities.

• The number of clashes, i.e.
∑n

i=1 Θ(γi > 1). This is the number of cycles in which the server received
more than one action command. One of these commands will be randomly chosen for execution.
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Method 1 Method 2 Method 3 Method 4

total cycles 24750 100.00% 24750 100.00% 24750 100.00% 24750 100.00%
optimized (on time) 14899 60.20% 7333 29.63% 13039 52.68% 14415 58.24%
optimized (late) 1605 6.48% 1268 5.12% 867 3.50% 50 0.20%
unoptimized (on time) 0 0.00% 15191 61.38% 9744 39.37% 10199 41.21%
unoptimized (late) 0 0.00% 765 3.09% 326 1.32% 16 0.06%
holes 8246 33.32% 193 0.78% 774 3.13% 70 0.28%
clashes 0 0.00% 58 0.23% 742 3.00% 65 0.26%

Table 5.2: A comparative analysis of different agent-environment synchronization methods.

5.5 Results

The results of the experiment described in Section 5.4 are presented in Table 5.2. The first method was
the External Basic scheme in which action commands are only sent after a see message. The results for
this method clearly show that it is very inefficient. Since see messages will only arrive in two out of every
three simulation cycles, one-third of the total number of cycles will automatically be a hole as is shown in
Table 5.2. The agent will thus miss many action opportunities and this will slow him down significantly
(e.g. when running after the ball). Note that all the action commands sent to the server are optimized
due to the fact that an action is always chosen directly after the arrival of a see message. The percentage
of commands that reach the server in the next cycle can be attributed to cycles in which the see message
arrived very late. In these cases, the cycle has ended while the agent determines his next action and sends
it to the server and as a result the action command arrives at the beginning of the next cycle.

The second method was the Internal Basic scheme in which an action is sent to the server every 100ms. Due
to the internal nature of the timing mechanism, the 100ms intervals for choosing an action are in no way
related to the arrival of sensory information from the server. The success of this method therefore depends
heavily on the relationship between the arrival times of see messages and the send time of commands.
This relationship will be different in each trial and thus so will the results. Table 5.2 shows that a large
percentage of the commands is unoptimized. This can be explained as follows. Since see messages arrive
only in two out of every three cycles, at least 33% of all the commands will always be unoptimized. During
the remaining 67% of the cycles there is about a 50% chance that the signal that counts the 100ms intervals
will go off before the see message arrives and in each of these cases the action will be unoptimized. In
total, about two-thirds of the commands sent will thus be unoptimized. Furthermore, if the signal arrives
late in the cycle then the command will not reach the server before the next cycle starts. Note that with
this method it is not always the case that a command arriving in the next cycle leads to a hole. Since
commands are sent every 100ms, it is possible that when the signal comes very late all the commands
reach the server in the next cycle which will not cause any holes. Also note that if a hole occurs this will
not always lead to a clash later on, i.e. the number of holes is not equal to the number of clashes. Due
to heavy CPU-load or network traffic it is possible that successive commands reach the server slightly
further than 100ms apart and this can lead to a hole. However, a clash will not necessarily follow since the
subsequent send signal comes 100ms after the previous one which will cause the next command to reach
the server one cycle later. Reversely, a clash can also occur without a hole due to the possible elasticity of
server cycles (see Section 5.2). When for some reason a cycle lasts longer than the specified 100ms, this
can cause a clash since the send times for consecutive commands will still be 100ms apart.

The third method was the Fixed External Windowing scheme in which the send time of a command is
related to the start of a cycle (i.e. the timing mechanism is external). Using this scheme the agent always
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sends an action command to the server exactly 90ms after the arrival of a sense message. Compared to
the second method we can see that the number of optimized commands is significantly larger now: in
about 56% (out of a maximum possible 67%) of the cycles the agent performs an optimized action. The
unoptimized commands come from cycles in which no see message arrived or from cycles in which the
see message arrived more than 80ms after the start of the cycle (taking into account the 10ms needed for
choosing an action). Furthermore, a larger number of commands now reach the server in the intended
cycle due to the fact that the send time of 90ms gives a high probability that the command arrives on time
(see Table 5.1). A disadvantage of this approach is that the number of holes has increased as compared
to the Internal Basic scheme. This is because the late send time causes the commands to reach the server
at the very end of a cycle and leaves only a small margin to the start of the next one. It is thus likely
that temporary increases in CPU-load or network traffic will lead to holes. Note that due to the external
nature of the timing mechanism the number of holes and clashes is more balanced. Since the send time of
a command is now related to the start of a cycle instead of the previous send time, a hole will eventually
always lead to a clash and clashes cannot occur without holes. Also note that the number of holes is not
equal to the number of times in which a command reached the server in the wrong cycle. This is because
a single hole can be followed by several late arrivals which will eventually be followed by a single clash.

The fourth method was the Flexible External Windowing scheme in which a flexible send time is used
depending on the arrival times of see messages. Action commands based on current visual information are
always sent immediately after they have been determined. Unoptimized actions are sent either 70ms or
90ms after the start of a cycle depending on whether visual information is not expected during that cycle
or expected in the second half. The results show that compared to the third method the percentage of
optimized actions is about the same. When we look at the total number of actions performed (i.e. subtract
the number of holes from the total number of cycles) we can see that for both methods about 58% of these
actions is optimized. However, the results for this method show that most of the commands now reach
the server in the correct cycle and as a result the number of holes is significantly lower. This is caused by
the fact that commands are only sent to the server at the very end of a cycle when this is necessary, i.e.
when a see message arrives very late. In all other cases the command will be sent earlier which reduces
the risk of a late arrival. Note that for this method the number of holes (and clashes) is almost equal to
the number of late arrivals. This is because the flexible send time causes most of the commands to reach
the server before the cycle ends. It is thus not likely that an occasional hole will be followed by several
late arrivals before a clash occurs. Instead, if a command reaches the server at the start of the next cycle
then the resulting hole will usually be directly followed by a clash. Altogether, the results in Table 5.2
clearly show that the Flexible External Windowing scheme performs better than the other methods.

5.6 Conclusion

In summary, a good synchronization method needs to have the following important properties:

1. It has to make sure that an action command is sent to the server in each cycle.

2. It has to make sure that the send time of each command is such that there is a high probability that
the command will reach the server before the end of the cycle.

3. It has to make sure that the chosen action is based on current visual information if possible.

The results presented in Section 5.5 clearly show that the Flexible External Windowing scheme outper-
forms the alternatives with respect to these properties. We have therefore chosen to use this method for
the agents of the UvA Trilearn 2001 soccer simulation team. It has been integrated into the agent’s main
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loop as follows. Each time when the agent receives a message from the server his world model is com-
pletely updated. In case of a sense message, the update is actually a prediction since it is based on past
observations only. When a see message arrives however, the previous world state is updated according to
the new visual information. After updating his world model, the agent chooses an action using the new
world state information. If the action is based on visual information from the current cycle it is sent to
the server immediately. Otherwise, the action is stored and sent upon the arrival of a signal (if it has not
been overwritten; see Algorithm 5.5).

In order to enhance the performance of this method during a real match, we have extended the imple-
mentation in two ways. Firstly, we use the action counters included in a sense message (see Section 3.2.3)
to avoid clashes. For each type of action command a sense message contains a counter which denotes the
number of commands of that type that have been executed by the server. When a new sense message
arrives it is therefore possible to check whether the command sent in the previous cycle has been executed
by comparing the appropriate counter value to the value in the previous sense message. If the counter has
not been incremented we can be sure that the command did not reach the server in time and will thus be
executed at the end of the current cycle. In this case, we record the previous cycle as a hole and avoid a
possible clash in the current cycle by not sending an additional action command to the server. A second
extension is that we have enabled our agents to adaptively lower the 90ms send time if a large number
of holes occur. This can be caused, for example, by heavy network traffic or the fact that the system is
slower than the one used for generating the results in Table 5.1. In our implementation we have made
sure that each agent sends an action to the server in every cycle even when he has nothing to do (in this
case a turn of 0 degrees is ‘performed’). It is then possible for the agents to keep track of the number
of holes themselves by examining the action counters in each sense message. During a match, the agents
check at regular intervals (400 cycles) whether the percentage of holes exceeds 1% (normally it should be
less than 0.3%; see Table 5.2) and if this is the case then the send time is lowered. Note that the hole
percentage is calculated from scratch for each separate interval (i.e. the calculation is not cumulative).

An additional benefit of sending an action to the server in each cycle is that it enables you to extract the
number of holes and clashes from the server logfile in a meaningful way. Clearly, this information would be
meaningless if a player would not send an action on each possible occasion, since the occurrence of a hole
would not necessarily be caused by a synchronization failure. With the current policy however, parsing
the server logfile can thus give an indication of the performance of the synchronization method used. Note
that during a real match it is not possible to determine which commands were optimized, since the type
of the command sent to the server will depend on the game situation and not on the arrival times of
visual messages. Furthermore, it is also not possible to find out which commands reached the server in the
correct cycle, since the arguments supplied to each command will no longer be equal to the cycle number
from which the command originated. It can thus only be determined in which cycle a command reached
the server and not when it was sent. The numbers of holes and clashes are therefore the only statistics that
can be derived. Table 5.3 shows these statistics for the entire UvA Trilearn 2001 soccer simulation team
(consisting of 11 players) for a full-length match lasting 6,000 cycles. The numbers on the left correspond
to a match which was played using the same three machines (AMD Athlon 700MHz/512MB) that were
used for generating the results in Table 5.2, whereas the numbers on the right were generated by playing

700MHz 1GHz

total cycles 66000 100.00% 66000 100.00%
holes 194 0.29% 13 0.02%
clashes 11 0.02% 0 0.00%

Table 5.3: Synchronization statistics for UvA Trilearn 2001 for two matches on different systems.
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a match on three faster machines (Pentium III 1GHz/256MB). As expected, the results show that on the
700MHz machines the hole percentage for the entire team is almost equal to that in Table 5.2 for the same
method. On the faster machines however, holes hardly ever occur anymore and the holes that do occur
are never followed by a clash due to the fact that no command is sent to the server if a hole is observed
in the previous cycle. From these results it can be concluded that the Flexible External Windowing
scheme provides a virtually optimal synchronization between an agent and the soccer server simulation
environment. Note that comparing these statistics to those for other teams would make no sense, since
players from other teams do not send an action to the server in each cycle (e.g. to save stamina) which
makes the statistics useless for measuring synchronization performance.

Throughout this chapter we have consistently ignored the possibility of trading off the frequency of vi-
sual messages against the quality of the given information and the width of the player’s view cone (see
Equation 3.1). The pseudo-code implementation for the Flexible External Windowing scheme presented
in Algorithm 5.5 was therefore based on the assumption that the arrival times of see messages describe a
pattern that is repeated every three cycles (see Equation 5.2). However, the implementation of the UvA
Trilearn 2001 agents is such that they change the width of their view cone in certain situations which will
cause this pattern to change. Note that Equation 5.1 is an instance of the following more general formula
that can be used to describe the new pattern:

δ = (tsee,1 − tsense,1) mod gcd(send step, simulator step) (5.3)

where gcd is a function that returns the greatest common divisor of its two arguments and where send step

and simulator step denote the length of the interval between consecutive see messages and the length
of a cycle respectively. It is fairly straightforward to extend the synchronization method appropriately
for the different cases and we will therefore conclude this chapter by giving an overview of the possible
patterns8. These patterns can then be used to determine the correct send times for each cycle.

• When the view cone is narrow (45 degrees) visual information will come at 75ms intervals and it
will thus hold that δ ≤ 25. The repeating pattern then becomes {δ, δ + 75, δ + 50, δ + 25}.

• When the view cone is normal (90 degrees) visual information will come at 150ms intervals and it
will thus hold that δ ≤ 50. The repeating pattern then becomes {δ, δ + 50,−} where ‘−’ denotes
that no visual information arrives during a cycle.

• When the view cone is wide (180 degrees) visual information will come at 300ms intervals and it
will thus hold that δ ≤ 100. The repeating pattern then becomes {δ,−,−}.

8Here we ignore the possibility of changing the view quality to low. The reason for this is that it never happens in our
implementation due to the limited usefulness of visual information that contains no distances to objects.



Chapter 6

Agent World Model

In order for an agent to behave intelligently it is important that he keeps a world model that describes
the current state of the environment. The agent can then use this world model to reason about the best
possible action in a given situation. In this chapter we describe the world model of the agents of the UvA
Trilearn 2001 soccer simulation team. This model can be seen as a probabilistic representation of the
world state based on past perceptions. It contains various kinds of information about all the objects on
the soccer field as well as several methods which use this information to derive higher-level conclusions.
The chapter is organized as follows. Section 6.1 provides a general introduction and discusses several
issues which are related to world modeling. The various attributes which are stored in the world model of
the agents are described in Section 6.2. Sections 6.3 − 6.6 are devoted to a discussion of different types
of methods which can be used to deal with the world state information in different ways.

6.1 Introduction

A common feature of all agents is that they perceive their environment through sensors and act upon it
through actuators. In its simplest form, an agent can be implemented as a direct mapping from perceptions
to actions. This means that the agent will respond immediately to perceptual input by associating it with
a certain action. A more sophisticated agent however, will not base his actions directly on raw sensory
data, but rather on an interpretation of these data. The interpretation of sensory data requires that they
are stored using some kind of internal representation and processed using an internal model that reflects
the current state of the world. The agent can then use this world model to reason about the best possible
action in a given situation. As such, the world model can be seen as one of the most important parts of
the agent architecture. It consists of the world as currently perceived by the agent and can be updated
both as a result of processed sensory information and according to predicted effects of actions. Since
action selection is based on this model, it is clear that it should represent the real world as accurately
as possible. Furthermore, the world model should provide an abstraction of the attributes contained in
it by supplying methods that enable the agent to reason about the information on a higher level. These
methods can be seen to form the basis of the agent’s reasoning process.

A robotic soccer agent must be aware of his own position and velocity as well as the positions and velocities
of the ball and other players. The agent therefore has to keep a world model that contains this kind of
information about various objects. In the soccer server each agent has three different types of sensors which

75
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Figure 6.1: Field coordinate system assuming that the opponent’s goal is on the right.

provide information about the current world state: a body sensor, a visual sensor and an aural sensor.
Information from these sensors is sent to the agents in the form of messages which can be used to update
the world model. Besides sensory information, each message also contains a time stamp that indicates
the time from which the information originated. By storing this time stamp next to the corresponding
information, the agent can distinguish up-to-date world model information from older information. An
important aspect of the soccer server is that the given sensory information is always relative from the
agent’s perspective. As a result, an agent cannot directly observe his own global position or the global
positions of other objects. The relative information must be converted into global information however,
since old relative information is useless once the agent has moved to another position on the field.

The agents of the UvA Trilearn soccer simulation team keep a world model that contains information
about all the objects on the soccer field. This world model can be seen as a probabilistic representation
of the real world based on past perceptions. For each object an estimation of its global position and
velocity are stored (among other things) together with a confidence value that indicates the reliability
of the estimate. This confidence value is derived from the time stamp which is included in the sensory
messages, i.e. if the estimate is based on up-to-date information the associated confidence value will be
high. The world model is updated as soon as new sensory information is received by the agent and thus
always contains the last known information about the state of the world. Objects which are not visible
are also updated based on their last observed velocity. The confidence in the estimate decreases however,
for each cycle in which the object is not seen. Furthermore, the agents also use communication to increase
the amount of up-to-date information in their world model. As a result, their ability to cooperate with
other teammates is greatly enhanced.

As mentioned, all visual information is relative from the agent’s perspective and must be converted into
global information. This is done by making use of fixed objects (flags, lines and goals) which have been
placed on and around the field (see Figure 3.2). Since the global positions of these landmarks are known
and do not change, the agent can use them to localize himself by combining the landmark positions with
sensory data containing relative information about these objects. Subsequently, the agent’s global position
can be used to determine the global positions of other objects given their relative positions. The global
coordinate system for expressing positions and angles in the agent’s world model is shown in Figure 6.1.
The center of the field has been chosen as the origin of the system with the x- and y-axes running along
the length of the field (i.e. through the centers of both goals) and along the center line respectively. The
coordinate system is such that the negative x-direction for a team is towards the goal it defends, whereas
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the negative y-direction is towards the left side of the field when facing the opponent’s goal. Furthermore,
global angles are specified in the range [−180, 180]. Here the zero-angle points towards the center of the
opponent’s goal and increases in a clockwise direction. Note that global positions and angles are thus
specified in terms of the opponent’s side of the field, i.e. independent of whether a team plays from left to
right or right to left. This makes it possible to reason about positions and angles in a universal way.

In order to reason about the best possible action, the world model should also provide various methods
which enable the agent to use the information on a higher level. The UvA Trilearn agent world model
contains four types of methods which deal with the world state information in different ways:

• Retrieval methods can be used for directly retrieving information about objects.

• Update methods can be used to update the world model based on new sensory information.

• Prediction methods can be used for predicting future world states based on past perceptions.

• High-level methods can be used to derive high-level conclusions from basic world state information.

In the remainder of this chapter, each of these types of methods will be discussed in a separate section.
At first however, we will describe the various attributes which are stored in the world model of the agents.

6.2 Attributes

Attributes can be seen as the building blocks of the world model. Each piece of information that is
contained in the model is represented by a separate attribute. The attributes thus contain information on
which the agent’s reasoning process is based. It is therefore of great importance that the attribute values
represent the current state of the world as accurately as possible. Each time when the agent receives a new
sensory observation the attribute values are updated. In some cases the values can be retrieved directly
from the new message, but in most cases the contents of the message first need to be processed before
a particular attribute value can be determined. The UvA Trilearn agent world model contains a large
number of different attributes which can be divided into four main categories: environmental information,
match information, object information and action information. A separate subsection will be devoted to
each of these categories in which the various attributes that belong to that category will be described.

6.2.1 Environmental Information

The world model holds a number of attributes that contain information which is specific for the envi-
ronment provided by the soccer server. These attributes represent the various server parameters and
parameters for heterogeneous player types. When the player client makes a connection with the server he
receives three types of messages which are used to assign values to these attributes:

• The first message contains the values for all the server parameters. These parameters specify the
behavior of the soccer server and define the dynamics of the simulation environment. Examples
are simulator step and ball speed max which respectively denote the duration of a cycle and the
maximum speed of the ball. As soon as this message arrives from the server, the values are stored in
a separate class called ServerSettings. They can be used during the match to perform calculations
that predict the outcome of specific actions. Note that the initial values for player-related server
parameters are those which apply to the default player type.
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• The second message contains the values for several parameters which define the value ranges for
heterogeneous player parameters. These values are also stored in the ServerSettings class.

• For each heterogeneous player type, the server then sends a message containing the player parameter
values for that specific type. These values are randomly chosen from different intervals which are
defined by the values in the second message. The intervals are such that the abilities of each player
type are based on certain trade-offs (see Section 3.5). Heterogeneous players, for example, are usually
faster than default players, but also get tired more quickly. For each player type the corresponding
values are stored in a HeteroPlayerSettings object. When the coach puts a heterogeneous player of a
certain type on the field, this player gets the abilities which are defined by the parameter values for
that type. In this case, the player-related parameters in the ServerSettings class are updated for this
player so that the changed influence of his actions on the environment can be taken into account.

6.2.2 Match Information

The world model also holds several attributes that contain general information about the current state of
a match. These are the following:

• Time. This attribute represents the server time, i.e. the current cycle in the match. It is represented
by an ordered pair (t, s) where t denotes the current server cycle and s is the number of cycles
since the clock has stopped. Here the value for t equals that of the time stamp contained in the
last message received from the server, whereas the value for s will always be 0 while the game is
in progress. It is only during certain dead ball situations (e.g. an offside call leading to a free kick)
that this value will be different, since in these cases the server time will stop while cycles continue
to pass (i.e. actions can still be performed). Representing the time in this way has the advantage
that it allows the players to reason about the number of cycles between events in a meaningful way.

• PlayerNumber. This attribute represents the uniform number of the player. Its value is supplied by
the server and remains fixed throughout the match. The number can be used to identify players.

• Side. This attribute represents the side from which the player’s team is playing. Its value is either
left or right and remains fixed throughout the match (even when the teams change sides at half
time). The value for this attribute is very important due to the fact that the positions of landmarks
are fixed even when the player’s coordinate system changes. This thus means that if the team is
playing from left to right the global position of a landmark will be different than if it plays from
right to left.

• TeamName. This attribute represents the name of the player’s team and can have any string as its
value. It is used when parsing messages from the server to check whether the information is about
a teammate or an opponent.

• PlayMode. This attribute represents the current play mode and has one of the play modes discussed
in Section 3.6 as its value. In general, the play mode equals play on while the game is in progress
but will change as a result of certain dead ball situations such as free kicks or corner kicks.

• GoalDiff. This attribute represents the goal difference between the teams. Its value is zero when the
scores are level, becomes positive when the agent’s team is leading and negative when it is trailing.
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6.2.3 Object Information

The world model contains information about all the objects on the soccer field. These objects can be
divided into stationary objects which have a fixed position (flags, lines and goals) and dynamic objects
which move around (players and the ball). For each object, the information is stored in the Object class
which serves as a container for the data and provides no additional functionality other than methods for
setting and getting the information. Positions and velocities are stored in global coordinates since these
are independent of the agent’s position on the field, i.e. unlike relative coordinates they do not change
when the agent moves around. The agent uses the stationary objects (landmarks) on the field to localize
himself given relative perceptions about these objects. Based on his own global position he is then able
to translate the relative information about other objects into global information as well. Figure 6.2 shows
an UML class diagram for the object type hierarchy (refer to Section 4.3 for details about UML class
diagrams). Note that for each class only the most important attributes are shown and not the auxiliary
ones which are necessary for calculating these values. The relative positions of objects as obtained from
server messages, for example, are omitted. Furthermore, the operations for each class have also been
omitted for space reasons and because they provide no functionality other than setting or getting the
attribute values. The information contained in each class is described in more detail below.

• Object. This is the abstract superclass of the object type hierarchy which contains basic information
about an object. Its most important attributes denote the type of the object, the global position of
the object and the time at which the object was last observed. Note that the ‘object type’ attribute
uniquely defines the identity of the object (e.g. OBJECT BALL, OBJECT GOAL R, OBJECT TEAMMATE 9,
OBJECT OPPONENT 6, etc.). Furthermore, the ‘time last seen’ attribute can be used to derive a
confidence value that indicates the reliability of the object information [90]. This confidence value
comes from the interval [0, 1] and is defined by the following formula:

confidence = 1− (tc − to)/100 (6.1)

where tc denotes the current time and to the time at which the object was last observed. This means
that the confidence decreases by 0.01 for every cycle in which the object is not seen and is restored to
1.0 when the object is observed again. Note that the confidence value has been introduced because
the agent only has a partial view of the environment at any moment. If an object has not been
in view for a number of cycles, its current position is estimated based on its last observed velocity.
However, the estimate will become less reliable as this number of cycles increases due to the fact
that the agent does not know which actions the object has performed1. As such, the confidence
value is thus an important reliability measure for object information.

• FixedObject. This is a subclass of the Object class which contains information about the stationary
objects on the field. It adds no additional attributes to those inherited from the Object superclass.

• DynamicObject. This is also a subclass of the Object class which contains information about mobile
objects. It adds velocity information to the general information provided by the Object class. The
most important additional attributes denote the global velocity of the object and the time at which
this velocity was last observed.

• PlayerObject. This is a subclass of the DynamicObject class which contains information about a
specific player on the field (either a teammate or an opponent). It adds attributes denoting the
global neck angle and global body angle of the player as well as the time at which these angles
were last observed to the information provided by the DynamicObject class. Furthermore, it holds
a boolean attribute which indicates whether the player is a goalkeeper or not. Note that the agent
himself is not a member of this class.

1Note that the confidence value for landmarks will always be 1.0 due to the fact that landmarks have a fixed global position.
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Figure 6.2: UML class diagram of the object type hierarchy.

• BallObject. This is also a subclass of the DynamicObject class which contains information about the
ball. It adds no additional attributes to those inherited from the DynamicObject superclass.

• AgentObject. This is a subclass of the PlayerObject class which contains information about the agent
himself. It adds attributes denoting the stamina, view angle and view quality of the agent to the
information provided by the PlayerObject class.

The world model contains information about all the visible flags as well as the furthest visible line. The
visual sensor perceives a line when the bisector of the agent’s view cone intersects this line. This means
that when the agent is located inside the field he will always see only a single line. In cases where the
agent is positioned outside the field (e.g. to perform a ‘kick in’), we only store information about the
furthest visible line because the orientation to this line is the same as when the agent would be standing
inside the field facing in the same direction. Furthermore, the world model contains information about
all the dynamic objects on the field: the ball, 11 opponent players, 10 teammates and the agent himself.
Information about players is stored based on their uniform number, i.e. the uniform number can be used
to index the player information. The biggest challenge for keeping track of all the players is that if the
distance to a player is very large his uniform number and possibly team name will not be visible (see
Section 3.2.1). Visual information received by the agent thus often will not identify a player that is
seen. In these cases, previous player positions are used to help disambiguate the identity. By combining
the position and velocity information of a player currently stored in the world model, it is possible to
determine whether an observed player could be the same as this previously identified one. If there is a
possible match, it is assumed that the observed player is indeed the same as the one for which information
was already available. When no match is found however, the player information is linked to a player for
which the confidence value has dropped below a certain threshold. Note that this ‘anonymous’ player
information can still be very useful since the evaluation of passing options, for example, only requires
knowledge about the presence of a player and not about his uniform number.
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6.2.4 Action Information

The world model also holds several attributes that contain information about the actions that the agent
has previously performed. These are the following:

• NrKicks, NrDashes, NrTurns, NrSays, NrTurnNecks, NrCatches, NrMoves, NrChangeViews. These
attributes are counters for the total number of actions of a certain type which have been executed
by the server; e.g. when NrTurns equals 38 this means that the agent has so far executed 38 turn
commands. The values for these attributes are directly obtained from the information included in
sense body messages (see Section 3.2.3). The counters are used to determine whether an action
command sent in the previous cycle has been performed. If the appropriate counter has not been
incremented we can be sure that the command did not reach the server before the end of the cycle
and will thus be executed in the current cycle instead of the previous one.

• QueuedActions. This attribute represents a list that contains all the actions that the agent has sent
to the server in the previous cycle.

• PerformedActions. This attribute represents a list of booleans that indicate for each action in the
QueuedActions list whether this action has been performed. The booleans are set by making use
of the counter values. The PerformedActions attribute thus represents the agent’s knowledge about
which actions have been performed and can be used to update the world model accordingly.

6.3 Retrieval Methods

Retrieval methods can be used for directly retrieving information about objects from the agent’s world
model. For each of the attributes described in Section 6.2, a getAttributeName method has been defined
which can be used to get the corresponding value. For attributes representing environmental information,
match information or action information these methods can be called without any arguments. The method
call getTime(), for example, will return the current time. For attributes representing object information
this is not possible however, since these attributes are defined for multiple objects. To obtain an attribute
value for a specific object one must thus supply an object identifier as an argument to the corresponding
retrieval method. This identifier is then used to look up the information for that particular object.
The method call getGlobalPosition(OBJECT TEAMMATE 3), for example, will return the currently stored
global position of the teammate with uniform number three. Methods have also been defined for iterating
over a group of objects. This can be useful when information about different objects has to be compared.

6.4 Update Methods

Update methods can be used to update the world model based on new sensory information from the server.
For each of the attributes described in Section 6.2, a setAttributeName method has been defined which
can be used to set the corresponding value. For some attributes the values can be directly extracted from
the information in a sensory message, whereas others need to be calculated based on the new information.
The world model is updated each time when new sensory information arrives from the server. Such an
update can be divided into two separate phases. The first phase is the process phase in which for each
object the information contained in the message is stored at the right location in the world model. In
the process phase a value is thus assigned to each attribute that represents a piece of information that is
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directly present in the sensory message. The second phase is the update phase in which the new values
are combined with the information already present in the world model to determine up-to-date values
for the remaining attributes. In this way all the world model data are always based on the last known
information about the state of the world. Note that an update of the world model will either be based on
new visual information or on predictions of future states. In this section we will discuss for each type of
sensory message (physical, visual and aural) how the two phases mentioned earlier have been implemented
to update the values in the agent’s world model.

6.4.1 Update from Body Sensor

The body sensor reports physical information about an agent. At the beginning of each simulation cycle
the agent receives a sense body message from the server that contains the following information:

• The time t (i.e. the current cycle) at which the information applies.

• The agent’s view angle and view quality.

• The agent’s stamina.

• Counters for the number of times that the agent has performed a certain action.

• The velocity (ṽtx, ṽ
t
y) of the agent relative to the direction of his neck.

• The neck angle θ̃t of the agent relative to his body.

As soon as such a message arrives, it is processed by storing the information at the appropriate location
in the agent’s world model (process phase). The agent’s speed and neck angle are then used to update
his global position and velocity (update phase) in an analytical way by making use of the known soccer
server dynamics. During each simulation cycle, the movement of mobile objects in the soccer server is
calculated according to the following equations (neglecting motion noise):

(ut+1
x , ut+1

y ) = (vtx, v
t
y) + (atx, a

t
y): accelerate (6.2)

(pt+1
x , pt+1

y ) = (ptx, p
t
y) + (ut+1

x , ut+1
y ): move (6.3)

(vt+1
x , vt+1

y ) = Decay × (ut+1
x , ut+1

y ): decay speed (6.4)

(at+1
x , at+1

y ) = (0, 0): reset acceleration (6.5)

Here (ptx, p
t
y), (v

t
x, v

t
y) and (atx, a

t
y) respectively denote the position, velocity and acceleration of the object

in cycle t. Decay is a parameter representing the velocity decay rate of the object. These equations can
be used to update the global position and velocity of the agent based on the information in the physical
message. Equation 6.3 shows that the difference between the global positions in the previous and current
cycles equals the movement (utx, u

t
y). This movement vector can be derived by rewriting Equation 6.4:

(utx, u
t
y) =

(vtx, v
t
y)

Decay
(6.6)

In order to determine the movement, we thus have to compute the global velocity (vtx, v
t
y) of the agent in

the current cycle. This can be done by making use of the relative velocity (ṽtx, ṽ
t
y) that is contained in the

sense body message. The key observation is that (vtx, v
t
y) and (ṽtx, ṽ

t
y) by definition will have the same

magnitude (representing speed). However, their directions will be different. The global velocity can thus
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be determined by performing a simple rotation of the relative velocity vector. Since (ṽtx, ṽ
t
y) denotes the

velocity of the agent relative to the direction of his neck, the rotation angle in this case will be equal to
the agent’s global neck angle θt. This angle can be determined by updating the global neck angle θt−1

(which is stored in the world model) based on the actions that the agent has sent to the server in the
previous cycle. Note that we first have to check whether these actions have been performed by comparing
the action counters included in the current sense message to the corresponding values in the previous one.
For determining θt we are only interested in turn and turn neck commands since these will change the
agent’s global neck direction if they are performed. The command parameters for these two actions can
be used to update the global neck angle in the following way:

θt = normalize(θt−1 + α+ ν) (6.7)

where α and ν respectively denote the actual angles by which the agent has turned his body and his neck
in the previous cycle and where normalize is a function that converts the resulting angle to an equivalent
angle from the interval [−180, 180]. Recall from Section 3.4.3 that the actual angle by which a player
turns his body is usually not equal to the Moment argument supplied to the turn command. Instead, the
actual turn angle depends on the speed of the player, i.e. as the player moves faster it is more difficult for
him to turn due to his inertia. Since a player cannot execute a dash and a turn in the same cycle, his
acceleration (atx, a

t
y) will become zero when a turn is performed. As a result, an expression for the global

velocity (vt−1
x , vt−1

y ) in the previous cycle can be derived by combining (6.2) and (6.4):

(vt−1
x , vt−1

y ) =
(vtx, v

t
y)

Decay
(6.8)

Since the turn has been performed in the previous cycle, the actual turn angle only depends on the speed
in that cycle. This speed can be determined by inversely applying the agent’s speed decay to his global
velocity in the current cycle, i.e. by replacing the vectors in Equation 6.8 by their norms. The actual turn
angle α as defined by Equation 3.31 then becomes:

α =
(1.0 + r̃) ·Moment

(1.0 + inertia moment) · ‖(vt−1
x , vt−1

y )‖
(6.9)

where Moment denotes the argument supplied to the turn command, inertia moment is a server param-
eter representing a player’s inertia and r̃ is a random number taken from a uniform distribution over the
[−player rand, player rand] interval. Since we have no past observations to filter the noise factor r̃, the
best prediction for α will be at the mean of the uniform noise distribution. The noise in Equation 6.9 is
therefore neglected when computing the actual turn angle. The resulting value for α and the actual angle
ν by which the agent has turned his neck (and which by definition equals the argument supplied to the
turn neck command) can now be used to determine the agent’s global neck angle θt in the current cycle
using Equation 6.7. Rotating the relative velocity (ṽtx, ṽ

t
y) over θt degrees then gives the global velocity

(vtx, v
t
y) in the current cycle after which (6.6) and (6.3) can be used to update the agent’s global position.

Note that in the above derivation we do not take previous velocity perceptions into account to improve
our global velocity estimation. The old perceptions are neglected for two reasons. Firstly, the noise added
to the motion of an object is propagated meaning that it actually changes the direction of the velocity
vector. The noise is thus actually affecting the movement and is not just included into the sensory data.
Due to this noise propagation, the currently perceived velocity will be based on a different direction of
movement than the velocity in the previous cycle. Secondly, the amount of sensor noise in the perceived
velocity is only small, whereas the amount of motion noise that is propagated from the previous cycle is
rather large (see Sections 3.2.3 and 3.3). The old perception therefore has little value for the prediction.

When a sense message arrives from the server, the global positions and velocities of other players and the
ball are also updated. Due to the fact that no information is available about which actions are performed



CHAPTER 6. AGENT WORLD MODEL 84

by other players, no assumptions are made about their behaviour in the previous cycle. This means that
their positions and velocities are updated according to Equations 6.2 to 6.5 with zero acceleration. In
order to update the information about the ball, it is checked whether the agent has performed a kick in the
previous cycle. This is again done by comparing the counter values for the kick command in subsequent
sense messages. If the agent has indeed executed a kick and if the ball was within his kickable distance
at the time, it is assumed that the ball has been accelerated as a result of the kick. In this case the ball’s
global position and velocity are updated based on Equations 6.2 to 6.5 with

(at−1
x , at−1

y ) = act pow × kick power rate× (cos(θt−1
ball), sin(θ

t−1
ball)) (6.10)

where act pow is the actual kick power as defined by Equation 3.26, kick power rate is a server parameter
which is used to determine the size of the acceleration vector and θt−1

ball is the direction in which the ball is
accelerated in cycle t− 1. This direction is equal to the sum of the agent’s body direction in the previous
cycle and the Angle parameter supplied to the kick command. If the agent did not perform a kick in the
previous cycle, it is assumed that the ball has not been kicked at all2. In this case, the ball information
is updated according to Equations 6.2−6.5 with zero acceleration. If the positions of the ball and the
agent overlap after the update, these positions are adapted according to the known soccer server collision
model. This means that both objects are moved back into the direction where they came from until they
do not overlap anymore. After this, their velocities are multiplied by −0.1.

Note that in order to update the agent’s world model based on a sense body message several unreliable
assumptions have to be made due to a lack of information. Examples are that it is assumed that the
ball is never kicked by other players and that other players do not perform actions. Since the arrival of
a sense body message indicates the start of a new cycle however, this uncertainty is represented by the
fact that the confidence values associated with the world model information have dropped according to
Equation 6.1. It is only when the agent receives visual information about an object that the confidence
in the object information is restored to its maximum value.

6.4.2 Update from Visual Sensor

The visual sensor detects visual information about objects in the agent’s current field of view. This
information is automatically sent to the agent every send step (in the current server version 150) ms in
the form of a see message that contains the following information:

• The time t (i.e. the current cycle) at which the information applies.

• Information about the visible objects on the field. This object information is relative from the
agent’s perspective (i.e. relative to his neck angle) and contains the following elements:

– The name by which the object can be uniquely identified.

– The distance r to the object.

– The direction φ to the object.

– The distance change ∆r of the object.

– The direction change ∆φ of the object.

– The body direction θ̃tbody of the object.

– The neck direction θ̃tneck of the object.

2Assumptions about other players executing kicks cannot be made in a meaningful way.
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For stationary objects only the name, distance and direction are given. For dynamic objects the
amount of information given depends on the distance to the object. The name, distance and direction
to these objects is always included, whereas the probability of receiving the last four items listed
above decreases as the distance to an object increases (see Section 3.2.1).

The world model is updated as soon as such a message arrives. During the process phase the information
contained in the see message is directly stored at the right location in the world model. After this, the
information about the agent himself is updated first. The agent’s global position is determined by making
use of the visible landmarks on and around the field. This global position is then used to update the
positions and velocities of other dynamic objects. Agent localization is thus extremely important since
errors in the self-localization method will propagate to all object information. In this section we compare
several methods for determining the agent’s global position and orientation using the available landmarks.
We then describe a number of methods for updating the positions and velocities of other dynamic objects
based on the new information. Note that the global velocity of the agent himself can only be calculated
from the information in a visual message by looking at the difference between the agent’s new global
position and his previous one. It is not necessary to do this however, since the global velocity can be
derived more accurately from the information received from the body sensor as described in Section 6.4.1.

6.4.2.1 Agent Localization

The various landmarks (flags and lines) which have been placed on and around the field are shown in
Figure 3.2. These landmarks can be used for self-localization. The agent will perceive a different number
of landmarks depending on his neck direction and location on the field. For example, when facing the
center of the field a large number of landmarks will be visible, whereas this number will become much
smaller when standing in a corner looking towards the closest side line. Clearly, a good localization method
using landmarks needs to have the following important properties:

• It must be accurate, i.e. the error in the resulting position estimate must be as small as possible.

• It must be robust, i.e. it should still work when only a small number of landmarks are visible.

• It must be fast, i.e. computationally cheap to satisfy the agent’s real-time demands.

In this section we describe three methods which can be used for agent localization in the soccer server.
These methods were experimentally compared based on a number of possible configurations for determin-
ing the agent’s global position. The results of this experiment are presented at the end of this section.

Method 1: agent localization using one line and one flag

The first method uses the relative visual information about one line and one flag to determine the agent’s
global position. The direction to this line can be used to calculate the agent’s global neck angle and
subsequently his global position by making use of the fixed global position of the flag which is known to
the agent. Let lb be the bisector of the agent’s view cone, i.e. the half line starting at the agent’s global
position which extends into the direction of his neck. When the agent sees a line l, the reported visual
information consists of the distance d to the intersection point of l and lb and the angle α between l and
lb. Figure 6.3 shows an example situation. Note that the reported angle α equals the acute angle by which
lb has to be rotated around the intersection point to be aligned with l. This angle will be positive in case
of a clockwise rotation and negative otherwise (see Figure 6.1). In order to obtain the agent’s global neck
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Figure 6.3: Determining the agent’s global neck angle θ using the reported angle α to a line l.

angle θ, we need to determine the angle β between lb and the perpendicular line lp depicted in Figure 6.3.
The angle β can be calculated according to the following formula:

β = −sign(α)(90− |α|) (6.11)

where sign is a function that returns +1 if its argument is positive and −1 otherwise. Note that it will
always be the case that sign(β) = −sign(α) because the orientation of the agent’s neck relative to the line
l will always be the reverse of the orientation relative to the perpendicular line lp. In order to determine
the global neck angle θ of the agent we also need to know the global orientation of the perpendicular line
lp. For each possible lp this orientation can be easily derived using Figure 6.1. The global orientations of
the lines perpendicular to each of the four side lines (top, bottom, left and right) are shown in Table 6.1
for the team that plays from left to right. For the opposite team the opponent’s goal is located on the
other side of the field and 180 degrees thus have to be added to each orientation.

Side line Perpendicular orientation

OBJECT LINE R 0
OBJECT LINE B 90
OBJECT LINE L 180
OBJECT LINE T -90

Table 6.1: Global orientations (in degrees) of lines perpendicular to each of the four side lines for the
left team. For the right team 180 degrees have to be added to each orientation.

Note that we assume here that a side line is perceived from a location inside the field3. Using the values
in Table 6.1 the agent’s global neck angle θ can be calculated as follows:

θ = orientation(lp)− β (6.12)

We can now use the position of the flag relative to the agent to determine his global position on the field.
Visual information about a flag f consists of the distance f̃r and direction f̃φ to this flag relative to the

neck of the agent. The visual message thus effectively contains the relative position (f̃r, f̃φ) of the flag
in polar coordinates. Furthermore, the agent also knows the fixed global position (fx, fy) of the flag4.
By combining the global and relative information about the flag, it is possible to determine the agent’s
global position (px, py). To this end, we first have to perform a rotation to align the relative coordinate

3This is why we only store information about the furthest visible line when the agent sees two lines from outside the field.
4The global positions of all the stationary objects (landmarks) are stored in the agent’s world model.
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system (polar) with the global coordinate system (Cartesian). Since all visual information is relative to
the neck of the agent, the rotation angle will be equal to the agent’s global neck direction θ. The agent’s
global position (px, py) is then obtained by converting the polar coordinates to Cartesian coordinates and
by performing a translation that matches the flag’s relative position to its global position. In summary,
(px, py) can thus be calculated as follows:

(px, py) = (fx, fy)− π(f̃r, f̃φ + θ) (6.13)

where π is a function that converts polar coordinates to Cartesian coordinates, i.e.

(x, y) = π(r, φ) = (r · cos(φ), r · sin(φ)) (6.14)

Method 2: agent localization using two flags

The second method uses the relative visual information about two flags to determine the global position
of the agent. Let the following information be included in a visual message:

• The distance f̃r and direction f̃φ to a flag named f .

• The distance g̃r and direction g̃φ to a flag named g.

In addition, the agent also knows the global positions (fx, fy) and (gx, gy) of f and g since these are stored
in his world model. Combining the distance to a flag with the known global position of this flag gives a
circle of possible agent positions. This circle has the flag as its center and the perceived distance as its
radius. In the same way the second flag also defines a circle of possible positions. Clearly, the correct
agent position must lie on both circles. In general, the circles will have two intersection points one of
which denotes the actual position of the agent. It can be determined which of these two points is the
correct one by looking at the difference between the angles at which both flags are perceived.

An example situation is shown in Figure 6.4. Following this approach, the agent localization problem thus
amounts to finding the correct intersection point p of the two circles. In order to determine this point, we
first calculate the orthogonal projection p′ of p onto the line segment that connects the two flags. To this
end we compute the distance d between f and g by making use of their known global positions, i.e.

d =
√

(gx − fx)2 + (gy − fy)2 (6.15)

This distance can be seen to consist of two parts: one from f to p′ and one from p′ to g. Let a denote the
distance from f to p′, b the distance from p′ to g and h the distance from p to p′. When we consider the
triangles fpp’ and gpp’ it follows from the Pythagorean theorem that

f̃2
r = a2 + h2 (6.16)

g̃2
r = b2 + h2 (6.17)

These equations and the fact that b = d− a can be used to derive the value for a. This gives:

a =
f̃2
r − g̃2

r + d2

2d
(6.18)

The global coordinates of p′ can now be determined as follows:

(p′x, p
′
y) = (fx + a · cos(α), fy + a · sin(α)) (6.19)
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Figure 6.4: Agent localization using two flags (f and g).

Here cos(α) and sin(α) are the normalized values for ∆x and ∆y as depicted in Figure 6.4, i.e. cos(α) =
∆x/d and sin(α) = ∆y/d. The global position p of the agent then becomes:

(px, py) = (p′x − h · Sign · sin(α), p′y + h · Sign · cos(α)) (6.20)

where h =
√

(f̃2
r − a2) as can be derived from (6.16) and where Sign equals +1 when g̃φ−f̃φ is positive and

−1 otherwise. The value for Sign thus determines which of the two intersection points denotes the correct
position of the agent. Note that it is also possible to use a third landmark to disambiguate the agent’s
global position since by definition the resulting third circle will provide a unique intersection point. This
has not been done for two reasons however. Firstly, the three circles often do not exactly intersect one
another in a common point due to the noise which is included in the sensory observations. Furthermore,
using only two landmarks better meets the robustness property mentioned at the beginning of this section.

Method 3: agent localization using a particle filter

The third method makes use of a particle filter [28, 110, 117] to determine the global position of the
agent. A convenient way to look at the agent localization problem is through a state-space approach.
The agent can be seen as a controllable Markov process with hidden (unobserved) low-dimensional states
xt ∈ X ⊂ Rq for each time step t. For the current problem these states correspond to positions. We assume
an initial state x0 and an initial distribution P (x0) at time t = 0. Furthermore, we regard the known
soccer server dynamics (including noise) as a stochastic transition model P (xt+1|xt, at) which brings the
agent stochastically from state xt to state xt+1 for an action at issued at time t. Assuming that sensory
observations yt sent by the server in each cycle are conditionally independent given the states xt, the
agent localization problem boils down to estimating in each time step t a posterior density P (xt|yt) over
the state space X that describes the agent’s current belief about its state at time t. Using the Bayes rule,
the following proportionality can be derived for this posterior:

P (xt+1|yt+1) ∝ P (yt+1|xt+1)P (xt+1) (6.21)
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where the prior density P (xt+1) corresponds to the propagated posterior from the previous time step, i.e.

P (xt+1) =

∫

P (xt+1|xt)P (xt|yt) dxt (6.22)

Here the Markov assumption that the past has no effect beyond the previous time step has been implicitly
used. Equations 6.21 and 6.22 provide an efficient iterative scheme for Bayesian filtering. However, in
order to determine the posterior analytically, we must be able to compute the integral in (6.22). The result
can then be multiplied by the likelihood P (yt+1|xt+1) after which the resulting density P (xt+1|yt+1) can
be normalized to unit integral. It turns out that the posterior can only be analytically computed when
the transition and observation models are linear-Gaussian [117]. Since this is not the case for the soccer
server simulation environment, we must resort to approximations or simulation.

The particle filter is an attractive simulation-based approach to the problem of computing intractable
posterior distributions in Bayesian filtering [28]. The idea is to determine a discrete approximation of the
continuous posterior density in (6.21) by using a set of N particles x it with associated probability masses
πit for i = 1, ..., N . An empirical estimate for the posterior is then given by

P (xt|yt) =
N
∑

i=1

πit δ(xt − x it ) (6.23)

with δ(xt − x it ) a delta function centered on the particle x it . Using (6.23), the integration for computing
the prior in (6.22) is now replaced by the following summation:

P (xt+1) =

N
∑

i=1

πit P (xt+1|xit) (6.24)

Since all the integrals are replaced by sums and all the continuous densities by discrete ones, the required
normalization step of the filtered posterior

P (xt+1|yt+1) ∝ P (yt+1|xt+1)
N
∑

i=1

πit P (xt+1|xit) (6.25)

becomes trivial, namely, a normalization of the discrete masses to unit sum.

For the problem of agent localization in the soccer server we only use the visual information received in
the current cycle to determine the agent’s position. However, each visual message contains multiple pieces
of information (i.e. information about several objects) which can be regarded as subsequent observations
in the light of the above theory. We have implemented the particle filter method for agent localization
as follows. Assume that we have an initial estimate xt of the agent’s global position (e.g. based on his
previous position or using one of the methods described earlier). The posterior density P (xt|yt) is then
approximated by using a grid of particles which is centered on this estimated position. Each particle
on the grid has an associated probability mass πi which is equal to 1/N with N the total number of
particles. The reason for choosing a uniform distribution is that we have no measure for the quality of
the initial estimate. Initially, the probability for each particle is thus the same and each particle can be
seen as a ‘candidate’ position. We can now use the perceived distance and direction to a flag to reduce
the number of candidates. Recall from Section 3.2.1 that noise is incorporated into the visual sensor data
by quantizing the values sent by the server. Distances to flags are quantized as follows:

r′ = Quantize(exp(Quantize(ln(r), quantize step l)), 0.1) (6.26)



CHAPTER 6. AGENT WORLD MODEL 90

PSfrag replacements

l
d
lp
lb
p
p′

f

g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d)
dr
dl
sl
sr

3σ(dl)
3σ(dr)

20 meters

Figure 6.5: The perception of a flag f yields a range of possible agent positions as indicated by the
shaded area. This is due to the sensor noise that is incorporated into visual observations.

where r and r′ are the exact and quantized distances respectively and where quantize step l is a server
parameter which represents the quantize step. Furthermore,

Quantize(V,Q) = rint(V/Q) ·Q (6.27)

where ‘rint’ denotes a function which rounds a value to the nearest integer. This quantization procedure
effectively means that a range of real distances r to a flag is mapped to the same quantized distance r ′

which is included in the visual message. Given the quantized distance r′ we can determine the minimum
and maximum value for the real distance r. Note that in Equation 6.26 the second argument supplied
to the Quantize formula is always a constant value (either 0.1 or quantize step l which equals 0.01 in
soccer server version 7.10). Assuming that Quantize(V,Q) = q, this enables us to calculate the minimum
and maximum possible value for the first argument V by ‘inverting’ Equation 6.27. This gives:

Vmin = invQMin(q,Q) = (rint(
q

Q
)− 0.5) ·Q (6.28)

Vmax = invQMax(q,Q) = (rint(
q

Q
) + 0.5) ·Q (6.29)

By applying this twice in (6.26) we get the range from which the real distance r must originate:

rmin = exp(invQMin(ln(invQMin(r′, 0.1)), quantize step l)) (6.30)

rmax = exp(invQMax(ln(invQMax(r′, 0.1)), quantize step l)) (6.31)

Using the perceived distance r′ we can update the particle grid by removing all the particles that do not
fall within the computed range [rmin, rmax] of real distances. We can then further update the particle grid
by taking into account the perceived direction φ′ to the flag. Directions to flags and lines are quantized
by rounding the real value to the nearest integer (see Equation 3.18). This means that the quantized
direction can deviate at most 0.5 degrees from the real value. However, the same holds for the agent’s
global neck angle θ which is also estimated based on a directional observation (see Section 6.4.2.2). Given
the quantized direction φ′, the range from which the real direction φ must originate thus equals

[(φ′ − 1), (φ′ + 1)] (6.32)

Based on this information we can again remove all the particles for which the perceived direction to the flag
(given the agent’s global neck angle) falls outside the range in (6.32). An example of how the perception of
a flag yields a range of possible agent positions is shown in Figure 6.5. After removing the ‘illegal’ particles
from the grid using this range information, the original number of particles is restored by resampling the
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grid in the ‘legal’ area (i.e. from the posterior in (6.25)). This is done by randomly selecting one of the
remaining particles and centering a Gaussian kernel on this point for which the standard deviation σ
reflects the local density. Following [118], we choose σ as follows:

σ =
1

12

√

√

√

√

1

n

n
∑

i=1

‖xit − x̄‖2
(

4

n(d+ 2)

)
1

d+4

(6.33)

with n the number of remaining particles, x̄ the mean of all remaining particles and d the dimension of the
data (in our case d = 2 since the particles denote positions). This σ has the property that it minimizes the
mean integrated squared error between a hypothetical Gaussian posterior distribution and the resampled
particle set. A new particle is then created by drawing a sample from the Gaussian. This is done for
randomly selected particles until the original number of samples has been restored. The particle filter
procedure is repeated for every observation yt. This means that the particle grid is updated for each
visible flag after which the grid is again resampled. When all the flags have been processed we determine
the average of the remaining set of particles to obtain our global position estimate.

Results

We have compared the performances of the three methods described above by conducting an agent local-
ization experiment. For this experiment we used a number of different configurations:

• Configuration 1. The first method is applied to localize the agent using the furthest visible line and
the closest visible flag.

• Configuration 2. The first method is applied to localize the agent using the furthest visible line and
all the visible flags. For each flag the visual information is combined with the information about the
line to obtain a global position estimate. This estimate is then weighted depending on the distance
to the flag. We have already seen that, given the perceived distance r′ to a flag, it is possible to
determine the range of values [rmin, rmax] from which the real distance r must originate by inverting
(6.26). Each new measurement yi+1 is now weighted according to the variance σ2

i+1 of this possible
range of values. Since the values in this range are uniformly distributed this gives:

σ2
i+1 =

(rmax − rmin)2
12

(6.34)

Using a simple recursive parameter estimation method (Kalman filter [43]) the current estimate is
updated by taking into account the new measurement with its associated variance. For each new
measurement yi+1, the current estimate x̂i is corrected by adding a weighted difference as follows:

x̂i+1 = x̂i +K · (yi+1 − x̂i) (6.35)

where the correction term K equals

K =
σ̂2
i

σ̂2
i + σ2

i+1

(6.36)

This means that the sample weight will be smaller if the distance (and consequently σ2
i+1) to a

perceived flag is larger. The variance σ̂2
i is updated according to

σ̂2
i+1 = σ̂2

i −K · σ̂2
i (6.37)

Note that such a Kalman filter based method corresponds to a Gaussian approximation of the
posterior distribution P (xt+1|yt+1) in (6.21).
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• Configuration 3. The second method is used to localize the agent with the two closest visible flags.

• Configuration 4. The second method is applied to localize the agent using all possible combinations
of two visible flags. The resulting estimates are again weighted depending on the distances to the
perceived flags and updated according to the Kalman filter update equation (see (6.35)). However,
since each measurement is generated using information about two visible flags, we get two ranges
of possible distance values on which to base the weight. We have already seen that the perceived
distance d′ to a flag defines a circle of possible agent positions. As a result, the range [rmin, rmax] of
real distances corresponding to r′ can be seen to define a ring-like area that contains the agent’s true
position. Combining the information about two flags thus gives us an intersection area of two rings in
which the agent’s position must be located. Clearly, the size of the intersection area depends on the
possible distance ranges and represents a measure for the confidence in the estimate (as the area gets
larger, the weight should decrease since the measurement is taken from a larger set of possibilities).
The size of this intersection area is therefore used to weight the samples (i.e. it represents σ2

i+1 in
(6.36)). This resembles a spherical Gaussian that is centered on the mean of this area.

• Configuration 5. The particle filter method is applied to determine the agent’s global position. We
use the second method (fourth configuration) to obtain an initial position estimate5 and center a grid
of 13×13 particles on this estimate with 0.0216m between them (this distance will be explained later).
After each update, the original number of particles is restored by resampling from the posterior using
the Gaussian sampling method described earlier. When all the visible flags have been processed, the
remaining set of particles is averaged to obtain our estimate of the agent’s global position.

• Configuration 6. The agent’s global position is again determined by applying the particle filter
algorithm and using the second method (fourth configuration) to obtain an initial estimate. The
difference with the previous configuration is that the resampling step is now omitted, whereas the
number of particles is increased in such a way that the total computation time for both configurations
(5 and 6) is the same. It turns out that this is approximately the case for a grid of 21× 21 particles
(separated by 0.013m to keep a constant size). The idea is to investigate whether a more accurate
estimate can be obtained in the same amount of time by using more points which are not resampled.

These configurations were tested by placing the agent 10,000 times at a random position on the field with
a random orientation. After each placement, the agent calculated his global position based on the visual
information that he received. This was done for each configuration. The resulting estimates were then
compared to the noise-free global information received by the coach to determine the estimation error for
each configuration on that particular trial. Table 6.2 displays the results of this experiment which was
performed on a Pentium III 1GHz/256MB machine running Red Hat Linux 7.1.

Configuration Average error (m) Standard deviation (m) Total time (s)

1 0.1347 0.1270 0.0542
2 0.1485 0.2026 0.4542
3 0.2830 0.5440 0.0373
4 0.0821 0.0516 15.0893
5 0.0570 0.0442 56.6959
6 0.0565 0.0440 54.2441

Table 6.2: Localization performance for different configurations over 10,000 iterations.

5The setup for the localization experiment (random placement) was such that previous agent positions could not be used.
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These results clearly show that configurations 5 and 6 outperform the alternatives with respect to the
accuracy of the estimates. The average error for the first configuration (using the furthest visible line and
closest visible flag) is more than twice as high although the method is faster. When the first method is
used with all the visible flags (configuration 2) the total time obviously increases and the average error
becomes larger too. The reason for this is that the estimate is now partly based on visual information
about flags located at a larger distance from the agent than for the first configuration. More noise is thus
incorporated into the information that is used and despite the fact that these samples are weighted less
in the overall estimate they have a negative influence on the estimation error. The average error for the
third configuration (using the two closest flags) is the highest. In general, the second method is faster
than the first but less accurate. This can be explained due to the fact that the noise included in the
visual observations defines a larger area of possible agent positions for the second method than for the
first method. The estimate obtained by applying the second method will thus be one from a larger set of
possibilities and this increases the possible estimation error. However, if we use all possible combinations
of two visible flags and weight the resulting samples based on the distances to these flags (configuration
4) the estimate is improved significantly. When the agent is placed at a random position on the field as
was done in the experiment, he sees 13.4 flags on average with a standard deviation of 7.2. This gives
a total number of approximately

(

13
2

)

= 78 pairs of flags on which to base the estimate6. The weighted
average is thus taken over a large number of measurements and this causes the noise to be filtered out.

It can be concluded that the fourth configuration outperforms the first three in terms of accuracy. This
justifies our choice of using the fourth configuration to obtain an initial position estimate for the particle
filter algorithm used in configurations 5 and 6. Note that the total width of the particle grid (0.26m) has
been chosen approximately equal to twice the sum of the average error and standard deviation for the
fourth configuration. In this way, the particle grid will almost certainly cover the agent’s true position
when centered on the initial estimate. Configurations 5 and 6 clearly yield the best results: they achieve a
very low estimation error7 with a small standard deviation. This is not surprising however, since the filter
uses visual information about all the flags to further improve the initial estimate which is already very
good. Note that this obviously makes the method significantly slower than the previous ones. However,
when we consider the fact that the total time applies to 10,000 iterations the method is still more than fast
enough to meet the agent’s real-time demands. Note that there is hardly any difference between the fifth
configuration, which resamples the particles, and the sixth configuration, which does not resample but uses
more points. Both configurations achieve about the same error in equal time. Due to the slightly better
estimation error for the sixth configuration, the UvA Trilearn agents use this configuration to localize
themselves. It turns out that our agent localization method is very accurate compared to those of other
teams which report estimation errors in the range 0.12− 0.3 ([16, 27, 91, 106, 111]).

6.4.2.2 Agent Orientation

The agent can also use the visible landmarks on the field to determine his global neck angle and global
body direction. Here we present two methods which can be used to calculate the agent’s global neck angle.

• The first method uses the perceived direction to the furthest visible line to determine the agent’s
global neck angle. This method has been described in Section 6.4.2.1 during the explanation of the
first agent localization method. Note that the resulting angle includes noise due to the fact that the
actual direction to the line is quantized by rounding the value to the nearest integer.

6During matches this number will be even larger since the agent is then often positioned more centrally on the field which
enables him to see more flags. However, the random placement sometimes causes agent positions from which only a small
number of flags are visible.

7Especially when one considers the fact that the field has a size of 105m× 68m.
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• The second method uses the perceived direction f̃φ to a flag f and combines this information with
the known global position (fx, fy) of f and with the calculated global position (px, py) of the agent
to determine the agent’s global neck angle. The first step is to compute the angle α between (fx, fy)
and (px, py). The agent’s global neck angle θ is then obtained by subtracting from α the relative

direction f̃φ to the flag. In summary, the global neck angle θ can thus be calculated as follows:

θ = normalize(atan2(fy − py, fx − px)− f̃φ) (6.38)

where normalize is a function that converts the resulting angle to an equivalent angle from the
interval [−180, 180] and where ‘atan2(x,y)’ is a function that computes the value of the arc tangent
of x/y in the range [−180, 180] using the signs of both arguments to determine the quadrant of the
return value. Note that the resulting estimate again includes noise since the directional observation
f̃φ is the result of rounding the real value to the nearest integer. Furthermore, the quality of the
estimate will also depend on the accuracy of the calculated global position (px, py). The results
presented in the remainder of this section are based on estimates of (px, py) obtained from using the
sixth configuration described in Section 6.4.2.1.

We have compared the performances of the two methods described above by performing an agent orien-
tation experiment. For this experiment we used three different configurations:

• Configuration 1. The first method is applied to determine the agent’s global neck angle using the
perceived direction to the furthest visible line.

• Configuration 2. The second method is applied to determine the agent’s global neck angle using the
perceived direction to the closest visible flag.

• Configuration 3. The second method is applied to determine the agent’s global neck angle using
all the visible flags. For each flag the perceived direction is combined with the flag’s known global
position and with the global position of the agent to obtain an estimate of the agent’s global neck
angle. The overall estimate is then computed by averaging the measurements for all the flags. Note
that it is not necessary to weight the samples in this case since noise is added to each observation
in the same way (i.e. by rounding the real direction to the flag to the nearest integer).

These configurations were again tested by placing the agent 10,000 times at a random position on the
field with a random orientation. After each placement he then calculated his global neck angle using the
visual information that he received. This was done for each configuration. The resulting estimates were
then compared to the noise-free global information received by the coach to compute the estimation error
on each trial8. Table 6.3 displays the results of this experiment which was performed on a Pentium III
1GHz/256MB machine running Red Hat Linux 7.1. These results show that the first method is more
accurate and slightly faster than the second (compare configurations 1 and 2). However, when the second
method is used with all the visible flags (configuration 3) the estimation error is significantly reduced
while the increase in total computation time over 10,000 iterations is negligible. Note that this scaling
approach is not possible for the first method, since the agent always sees only a single line when he is
positioned inside the field. The UvA Trilearn agents use the third configuration to determine their global
neck angle. They can then calculate their global orientation (i.e. body angle) by combining this neck angle
with the θ̃t information which is contained in sense body messages and which denotes the agent’s neck
angle relative to his body. Note that in this case it would also have been possible to improve the neck
angle estimate through particle filtering. We chose not to do this however, since the average error for the
third configuration was already extremely small9.

8Actually, the coach also receives directions as rounded integers. For this experiment we therefore had to adapt the soccer
server implementation in such a way that the real directional values were sent to the coach to enable the comparison.

9For comparison: YowAI, a strong simulation team from recent years, reports angle estimation errors of ±0.5 degrees [106].
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Configuration Average error (deg) Standard deviation (deg) Total time (s)

1 0.5038 0.2894 0.0115
2 0.5569 0.4206 0.0212
3 0.1898 0.1746 0.1990

Table 6.3: Neck angle estimation performance for different configurations over 10,000 iterations.

6.4.2.3 Dynamic Object Information

When the agent’s global position and orientation have been updated, this information is used to update
the world model attributes for other dynamic objects (i.e. the ball and other players). For these objects
the following values need to be computed:

• The global position (qx, qy).

• The global velocity (vx, vy).

• The global body angle θtbody (only for players)

• The global neck angle θtneck (only for players)

The global position (qx, qy) of a dynamic object can be determined by combining the relative visual
information about the object with the derived global information about the agent. The visual message
effectively contains the relative position (q̃r, q̃φ) of the object in polar coordinates. In order to determine
the object’s global position we must align the relative coordinate system (polar) with the global coordinate
system (Cartesian) by performing a rotation. Since all visual information is relative to the agent’s neck,
the rotation angle equals the agent’s global neck angle θ which has been computed earlier. The polar
coordinates must then be converted to Cartesian coordinates and the result must be added to the agent’s
global position (px, py). This gives the following formula for calculating the object’s global position (qx, qy):

(qx, qy) = (px, py) + π(q̃r, q̃φ + θ) (6.39)

where π is a function that converts polar coordinates to Cartesian coordinates as shown in Equation 6.14.
Note that we do not use past observations to improve the estimate of the object’s global position. The
reason for this is that the agent has no information about the actions that have been performed by other
players. There is thus no way to determine the relevance of old positional information about dynamic
objects (players might have dashed since then, the ball might have been kicked, etc.). As a result, the
current visual perception is the only completely reliable source of information about the position of other
dynamic objects on the field.

If the distance to a visible player is not too large, a see message also contains the body direction θ̃tbody
and neck direction θ̃tneck of this player relative to the neck direction of the agent. These values can be
used to calculate the player’s global body angle θtbody and global neck angle θtneck by simply adding the
agent’s global neck angle θ to the relative directions included in the visual message:

θtbody = θ̃tbody + θ (6.40)

θtneck = θ̃tneck + θ (6.41)

Note that if the visual message does not contain θ̃tbody and θ̃tneck (i.e. the player is too far away) no
assumptions are made concerning the player’s behavior in the previous cycle. This means that the values
for θtbody and θtneck which were already stored in the world model remain unchanged.
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Figure 6.6: Components used for calculating change information of dynamic objects.

Estimating the velocity of dynamic objects is a prominent part of updating the agent’s world model.
An accurate estimate of the ball velocity, for example, is very important for determining the optimal
interception point. We describe three methods for estimating the velocity of dynamic objects which
will be compared using different configurations. In the remainder of this section we will concentrate on
estimating the ball velocity, although the methods presented can be applied to players as well.

Method 1: velocity estimation using change information

The first method uses the distance change ∆r and direction change ∆φ which are included in a visual
message to estimate the ball velocity (vx, vy). Recall from Section 3.2.1 that the values for ∆r and ∆φ
are calculated according to the following equations:

∆r = (vrx · erx) + (vry · ery) (6.42)

∆φ = [(−(vrx · ery) + (vry · erx))/r] · (180/π) (6.43)

where r and (vrx, vry) respectively denote the distance to the ball and the ball velocity relative to the
agent’s neck direction. Furthermore, (erx, ery) is equal to the unit vector in the direction of the relative
position (qrx, qry) of the ball:

erx = qrx/r (6.44)

ery = qry/r (6.45)

where (qrx, qry) = (qx, qy)− (px, py), i.e. the relative ball position equals the difference between the ball’s
global position (qx, qy) and the agent’s global position (px, py). A graphical depiction of these quantities
is shown in Figure 6.6 for an example situation. The distance change ∆r can be regarded as the difference
between the x-coordinates for the current and previous ball positions in the relative coordinate system of
the agent, whereas the direction change ∆φ can be regarded as the quotient of the difference between the
y-coordinates of these positions and the distance r to the ball. Given the distance change ∆r, direction
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change ∆φ and distance r, it is possible to recover the relative ball velocity (vrx, vry) by substituting
(6.42) into (6.43) and rewriting the result. This gives:

vrx = ∆r · erx −∆φ · (π/180) · r · ery (6.46)

vry = ∆r · ery +∆φ · (π/180) · r · erx (6.47)

Since all visual information is relative to the agent’s global neck angle θ, the global ball velocity (vx, vy)
can now be obtained by rotating the relative velocity vector (vrx, vry) over θ degrees.

Note that the resulting velocity estimate (vx, vy) is based on the assumption that the environment is
noiseless, whereas the server in fact adds noise to the simulation in several ways. Two forms of noise
actually affect the accuracy of the ball velocity estimate. These are:

• Movement noise. In order to reflect unexpected movements of objects in the real world, the soccer
server adds uniformly distributed random noise to the movement of the ball in each cycle as was
shown in Section 3.3. The amount of noise that is added depends on the speed of the ball, i.e. when
the ball goes faster more noise will be added. It is important to note that movement noise actually
changes the direction of the velocity vector and is not just included into sensory observations.

• Sensor noise. One of the real-world complexities contained in the soccer server is that noise is
incorporated into the visual sensor data by quantizing the values sent by the server. Examples are
that the precision of visual information about an object decreases as the distance to this object
increases and that angles are rounded to the nearest integer. The values for the distance, direction,
distance change and direction change are quantized according to Equations 3.15−3.19. Given the
quantized values it is possible to determine the ranges from which the real values must originate
by inverting these equations accordingly. This range information can then be used for recursive
parameter estimation methods or filtering algorithms to improve the velocity estimate.

Method 2: position-based velocity estimation

The second method uses the difference between the global position (qt−1
x , qt−1

y ) of the ball in the previous
cycle and its current global position (qtx, q

t
y) to estimate the global ball velocity (vtx, v

t
y) in the current

cycle. Since the agent has no information concerning the actions performed by other players, it is assumed
that the ball has not been kicked by any of them. Equation 6.2 shows that when the ball has not been
kicked (i.e. has zero acceleration) the movement (utx, u

t
y) from cycle t− 1 to cycle t is equal to the velocity

(vt−1
x , vt−1

y ) in cycle t − 1. From this it can be concluded that (vt−1
x , vt−1

y ) equals the difference between
(qtx, q

t
y) and (qt−1

x , qt−1
y ). In order to compute the velocity in cycle t, we have to multiply the velocity in

cycle t−1 by the velocity decay rate of the ball which is represented by the server parameter ball decay.
This gives the following formula for calculating the velocity (vtx, v

t
y) based on consecutive ball positions:

(vtx, v
t
y) = ((qtx, q

t
y)− (qt−1

x , qt−1
y )) · ball decay (6.48)

Method 3: velocity estimation using a particle filter

The third method uses the particle filter algorithm described in Section 6.4.2.1 to estimate the current
ball velocity. Each particle is represented by a quadruple (x, y, vx, vy) which contains the relative position
and velocity of the ball in Cartesian coordinates. When the first visual observation is received by the
agent, the included distance and direction to the ball are used to determine the ranges [rmin, rmax] and
[φmin, φmax] from which the real values must originate. This is done by inverting (3.15) and (3.18) using
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the ‘inverse’ quantize range [Vmin, Vmax] defined by (6.28) and (6.29). The same is done for the distance
change and direction change information which yields the ranges [∆rmin,∆rmax] and [∆φmin,∆φmax].
These four ranges are used to initialize a set of particles (r, φ,∆r,∆φ) by randomly selecting a value
from each range. After this, the polar coordinates r and φ are converted to Cartesian coordinates x and y
according to Equation 6.14 and the values for ∆r and ∆φ are used to compute a (vx, vy) estimate using the
first method described above. This results in a set of particles (x, y, vx, vy). The initial velocity estimate
is now obtained by computing the average of the velocity components of all the particles.

At the start of the next cycle, the position and velocity information contained in each particle is updated
according to the known soccer server dynamics and noise model. For this we use the exact same equations
that the server uses, meaning that uniformly distributed random noise is added in the same way. When a
new visual message arrives, it is then checked for each particle whether all the values (i.e. position10 and
velocity) are possible based on the new information. This is done by computing the ranges of possible
values for r, φ, ∆r and ∆φ for the current observation and by checking whether all the particle values
fall within the corresponding ranges. If for a certain particle this is not the case then this particle is
removed from the set. After this, the particle set is resampled by randomly selecting one of the remaining
particles and making an exact copy of it11. This is repeated until the original number of particles has been
restored. The velocity estimate is then equal to the average of the velocity components of all the particles.
Note that it is possible that the new observation causes all the particles to be removed from the set (e.g.
because the ball has been kicked which completely changes its position and velocity). In this case, the
possible value ranges corresponding to the current observation are used to re-initialize the particle set.

Note that this particle filter differs from the one which was used in the agent localization experiment
in Section 6.4.2.1. In the method described there all the particles were reinitialized for each subsequent
position estimate. In the current case however, they are propagated from each step to the next and only
reinitialized when the particle set becomes empty. Another difference is that more particles will be needed
for the filter described in this section since the state space has now become 4D instead of 2D.

Results

We have compared the performances of the three methods described above by conducting a velocity
estimation experiment. For this experiment we used four different configurations:

• Configuration 1. The first method is applied to estimate the ball velocity while neglecting the
movement noise of the ball as well as the noise contained in the visual sensor data.

• Configuration 2. The first method is applied to estimate the ball velocity thereby taking past
estimates into account as well as the noise that is added to visual observations. This is again done
according to the Kalman filter principles discussed earlier. However, the main difference in this case
is that the velocity estimate is now updated in two different ways. The first update takes place at
the start of a new simulation cycle (i.e. when the agent receives a sense body message). Although
new visual information has not arrived at this stage it is still possible to update the velocity estimate
according to the known soccer server dynamics. This means that the estimated ball velocity v̂t−1 in
the previous cycle is multiplied by the speed decay of the ball to obtain a new estimate as follows:

v̂t = v̂t−1 · ball decay (6.49)

10Note that we include the position information in a particle, since the movement of the ball from one cycle to the next says
something about its velocity as is shown in the second method. Furthermore, this position information might provide a good
alternative to Equation 6.39 for estimating the global ball position as well. We are currently working in this direction.

11Note that identical particles that result from the resampling step will be spread out again in the next cycle due to the fact
that the noise added during the particle update has a random character.
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Note that the movement noise which is added by the server is neglected in this equation. However,
the added noise in x- and y-direction (which is non-white due to the fact that it depends on the speed
of the ball in the previous cycle) is taken into account by increasing the variance σ̂2

t−1 associated
with the previous estimate in the following way (Equation 3.24 clarifies this):

σ̂2
t = σ̂2

t−1 · ball decay2 +
(2 · ball rand · ‖v̂t−1‖)2

12
· (2 · ball rand · ‖v̂t−1‖)2

12
(6.50)

The second update is performed when the agent receives new visual information. To this end,
the ranges of possible values for the distance change and direction change are calculated from the
quantized values received in the visual message. This gives possible ranges [∆rmin,∆rmax] and
[∆φmin,∆φmax] from which the perceived values must originate. The first method is now applied
using the mean of these two ranges (for which the values are uniformly distributed) to compute a
prediction vt of the current ball velocity. This prediction is then weighted with the current estimate
v̂t to obtain an improved estimate of the velocity of the ball in the current cycle. This gives:

v̂t := v̂t +K · (vt − v̂t) (6.51)

where the correction term K is again equal to

K =
σ̂2
t

σ̂2
t + σ2

t

(6.52)

Here the variance σ̂2
t is updated according to (6.37) and the variance σ2

t of the current measurement
is determined using the ranges [∆rmin,∆rmax] and [r ·∆φmin, r ·∆φmax] (see Figure 6.6) of possible
ball coordinate changes in the relative coordinate frame of the agent. Since the values in these ranges
are uniformly distributed this gives:

σ2
t =

(∆rmax −∆rmin)
2

12
· (∆φmax −∆φmin)

2 · r2
12

(6.53)

• Configuration 3. The second method is applied to estimate the ball velocity using information about
the global position of the ball in consecutive cycles.

• Configuration 4. The third method (particle filter) is applied to estimate the ball velocity using a
particle set that consists of 300 particles.

These configurations were tested by means of the following experiment which is depicted in Figure 6.7.
Two players were placed on the field respectively at positions (−14, 0) and (0, 14) both facing towards
the center spot. During each iteration the second player shot the ball with random power in a random
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Figure 6.7: The setup for the velocity estimation experiment.
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Configuration Average error (%) Standard deviation (%)

1 8.8536 6.8835
2 6.7963 7.116
3 48.360 682.1773
4 5.9075 5.3537

Table 6.4: Velocity estimation results for different methods over 1,500 iterations (18,121 measurements).

direction between 0 and −45 degrees (the shaded area in Figure 6.7 shows the part of the field to which the
ball is shot). The first player did not move and used the visual information that he received to estimate
the ball velocity in each subsequent cycle until the ball stopped or moved outside his view cone. This was
done for each of the four configurations described above. The resulting estimates were then compared to
the noise-free global information received by the coach to determine the relative estimation error for each
configuration. This experiment was repeated 1,500 times leading to a total of 18,121 measurements. Note
that the positions of both players were chosen in such a way that the distance between them was less than
the value for the server parameter unum far length (currently 20). This meant that the first player would
always receive the distance change and direction change information about the ball in a visual message
(see Section 3.2.1). Furthermore, the players were put at the edges of each other’s view cones to ensure
that the first player would be able to see the ball for as long as possible.

Table 6.4 displays the results of this experiment which was performed on a Pentium III 1GHz/256MB
machine running Red Hat Linux 7.1. These results clearly show that the position-based velocity estimation
method (configuration 3) yields the largest error. This is caused by the sensor noise that is added to the true
distance and direction values as observed by the player. This noise increases significantly as the distance
to the ball increases which leads to a large error in the estimated ball position. The results become
much better when the distance change and direction change information included in visual messages
is used to estimate the ball velocity (first method). Even when the noise is completely neglected and
past observations are ignored (configuration 1), this method performs much better than the position-
based algorithm. The results can be further improved by computing the velocity as a combination of an
estimate obtained from the current perception (taking noise into account) and a prediction based on past
observations (configuration 2). In this case the error is reduced to about 6.8%. However, the particle filter
method (configuration 4) yields the best results. This can be explained due to the fact that this method
takes both the visual sensor noise and ball movement noise into account. The calculation of possible
value ranges from which the values included in visual messages must originate provides an effective way
of initializing and filtering the particle set. Furthermore, the possible movement noise is incorporated
by simulating the soccer server dynamics including the noise model during each particle update. Each
particle can thus be seen as a possible ball state and when the number of particles is chosen large enough
the average of these possible states represents an accurate estimate of the true situation.

Figure 6.8 shows the results of the velocity estimation experiment as a function of the distance for the
first, second and fourth configurations. It is clear from these plots that the average estimation error
decreases as the distance to the ball becomes smaller. This is caused by the fact that the noise in the
perceived values for the distance and distance change is larger when the ball is further away. Furthermore,
the setup for the velocity estimation experiment was such that the ball always moved towards the player
that calculated the velocity. During a single iteration the distance from this player to the ball therefore
decreased over time. As a result, estimation methods which used past observations to estimate the
current ball velocity (configurations 2 and 4) achieved better results as the distance got smaller since the
estimates from the previous cycles then became more accurate. This effect is clearly visualized in Figure
6.8: shortly after the ball has been kicked by the second player, the average error and standard deviation
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Figure 6.8: Average velocity estimation error and standard deviation as a function of the distance.

for the second configuration drop rapidly as the distance decreases. This is also the case for the fourth
configuration although not quite as significantly. Note that it can be concluded from these results that for
small distances (< 12) the results for the second configuration are about as good as those for the particle
filter algorithm. Nevertheless, the UvA Trilearn agents use the particle filter algorithm for estimating the
velocity of dynamic objects due to the better estimation error for larger distances.

6.4.3 Update from Aural Sensor

The aural sensor detects spoken messages which are sent when a player or coach issues a say command.
Calls from the referee are also treated as aural messages. Aural messages contain the following information:

• The time t (i.e. the current cycle) at which the information applies.

• The sender of the message (referee, online coach left, online coach right or self) or the relative
direction to the sender if the sender is another player. Note that no information is given about which
player sent the message or about the distance to the sender.

• A string with a maximum length of 512 bytes representing the contents of the message.

Referee messages mostly contain information concerning changes in the current play mode. This happens,
for example, when a goal has been scored or when the ball goes out of bounds. As soon as such a message
arrives it is processed by storing the given information at the appropriate location in the agent’s world
model. No actions then have to be taken during the update phase. Messages from the coach usually contain
advice for the players based on observations about the current match. The players can use these messages
to adapt their strategy. Currently, the UvA Trilearn coach is only used for selecting heterogeneous player
types for certain field positions and for changing the players at these positions. The players are informed
of these changes by the referee. The coach himself thus passes no messages to the players.

The soccer server communication paradigm models a crowded, low-bandwidth environment in which the
agents from both teams use a single, unreliable communication channel. Spoken messages have a limited
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length (512 characters) and are only heard by players within a certain distance (50 metres) from the
speaker12. Furthermore, each player can hear only one message from a teammate every two simulation
cycles. Note that the permitted message length of 512 characters makes it possible to communicate a
considerable amount of information. It enables the agents, for example, to communicate their world
model to other teammates which would clearly not be possible if only short messages were allowed. The
UvA Trilearn agents therefore use communication to gather information about the parts of the field which
are currently not visible to them. The agent which has the best view of the field in a given situation
communicates his world model to other team members which can then use this information to increase
the reliability of their own world state representation. In the remainder of this section we will describe
the exact syntax of these messages and the way in which they are processed when received by an agent.
The policy that determines which player should communicate in a given situation and that defines how
frequently the broadcasting should take place will be discussed in Chapter 9.

When a player communicates world state information to other teammates, the message first of all contains
the side (left or right team), current cycle and uniform number of the speaker. Since all 22 players on
the field use the same communication channel, this part of the message is encoded in such a way that
it can be recognized that the message comes from a teammate and not from an opponent. Furthermore,
this encoding scheme also protects the agents from communicative interference by opponent players.
Opponents could, for example, try to corrupt the world model of an agent by re-sending previously
spoken messages from the other team at a later time. However, the coding scheme prevents damage in
these situations since the encoded cycle number will reveal that the information in the message is outdated.
The encoded part of the message is followed by the global position and velocity of the speaker and of the
ball for which the values are accompanied by their corresponding confidence values. The remainder of
the message then contains positional information about other players for which the confidence is higher
than a certain threshold. For each player the information consists of his uniform number followed by his
global position and associated confidence value. In order to indicate that a player is a goalkeeper (which is
important to know), an optional ‘g’ is added after his uniform number. This is necessary since goalkeepers
do not always have the same uniform number. If the uniform number of a player is unknown due to the
fact that the distance to this player is too large, then the uniform number for the player is set at −1. Note
that information about objects for which the associated confidence is low is not communicated.

The grammar for the message syntax is shown in Table 6.5. This shows that the encoded time stamp
in the message takes the form ‘[a-j][c-l][e-n][g-p]’. The encoding is such that a letter is chosen
from each of these four ranges based on the digits of the current cycle number. Each range consists of
10 consecutive letters which respectively correspond to the numbers 0 to 9. For example, cycle number
‘0000’ will be encoded as ‘aceg’, whereas cycle number ‘1934’ will become ‘blhk’. The encoding scheme
for the uniform number of the speaker is analogous: a letter is chosen from the range [j-t] in which the
consecutive letters correspond to the numbers 1 to 11. Note that double values that represent position
and velocity coordinates are only specified up to one digit behind the decimal point in order to make sure
that the message string will not exceed the maximum length of 512 bytes. When an agent receives aural
information, it is first determined whether the message was sent by a teammate by looking at the first
letter which denotes the side of the sender. If the side matches that of the agent, it is checked whether
the message contains up-to-date information by decoding the encoded time stamp. If it turns out that the
time stamp corresponds to the current cycle, the world state information is extracted from the message
and compared to the information that is currently stored in the agent’s world model. Object information
from the message is then only inserted into the model if the associated confidence value is higher than
the confidence in the current information for that object. If positional information is included about a
player for which the uniform number is unknown, the agent looks for the closest player based on the
current world state information. If the distance between this closest player and the anonymous player

12Referee messages and messages from the coach are an exception since these can be heard by all the players.
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<MESSAGE> -> <ENCODING> <AGENT_INFO> (<BALL_INFO>) (<TEAM_INFO>) (<OPP_INFO>)

<ENCODING> -> <SIDE> <ENC_TIME> <ENC_UNIFORM_NR>

<SIDE> -> l | r

<ENC_TIME> -> [a-j][c-l][e-n][g-p]

<ENC_UNIFORM_NR> -> [j-t]

<AGENT_INFO> -> <GLOB_POS> <GLOB_VEL>

<GLOB_POS> -> [double] [double]

<GLOB_VEL> -> [double] [double]

<BALL_INFO> -> <GLOB_POS> <GLOB_VEL> <CONF>

<CONF> -> double(0..1)

<TEAM_INFO> -> <UNIFORM_NR> <IS_GOALIE> <GLOB_POS> <CONF> <TEAM_INFO> | null

<UNIFORM_NR> -> [1-11] | -1

<IS_GOALIE> -> g | null

<OPP_INFO> -> <UNIFORM_NR> <IS_GOALIE> <GLOB_POS> <CONF> <OPP_INFO> | null

Table 6.5: Grammar for the UvA Trilearn 2001 message syntax for inter-agent communication.

position that is contained in the message is smaller than a certain threshold, the new position is assigned
to this closest player. If the distance exceeds this value however, the information is assigned to the player
with the lowest confidence below another threshold. Note that the entire message is discarded if the side
indicator at the start of the message does not match that of the receiver or if the time stamp is outdated
(i.e. is not equal to the current cycle time). Also note that in case of an aural message no calculations
have to be performed during the update phase.

6.5 Prediction Methods

Prediction methods can be used to predict future states of the world based on past perceptions. These
methods are important for the action selection process. The agent world model currently contains only
low-level prediction methods, i.e. methods for predicting low-level world state information such as future
positions of dynamic objects. Predictions at a more abstract and higher level (e.g. about the success of a
certain strategy or the behaviour of opponent players) cannot be made however. The prediction methods
that are contained in the world model can be divided into three main categories:

• Methods for predicting the state of the agent after performing a certain action. These methods
receive an action command as their only input argument and return a prediction of the agent’s state
(i.e. global position, global velocity, global body angle, global neck angle and stamina) after the
given command has been performed. This future state information is calculated by simulating the
soccer server movement model and action models based on the command parameters. For this we
use the server equations presented in Sections 3.3 and 3.4. The noise in these equations is ignored.

• Methods for predicting future states of other dynamic objects on the field. Note that this is very
difficult for players due to the fact that the agent has no knowledge about which actions other
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players intend to perform. In general, predictions about other players are therefore never made and
the methods in this category mainly focus on the ball. Future ball positions (and velocities) are easier
to predict since ball movement is less random than player movement. Players can perform many
different kinds of actions which influence their state in different ways, whereas the ball generally
moves along a certain trajectory which can only be changed by kicking it. It is possible to estimate
the ball positions in consecutive cycles by making use of the known soccer server dynamics for
updating the state of the ball. A key observation in this respect is that ball movement can be
modeled by a geometric series. A geometric series is defined as a series in which the ratio between
consecutive terms is constant. This can be expressed as follows:

a, ar, ar2, ar3, ... (6.54)

where a will be referred to as the first term and r as the ratio of the series. We have already seen that
the soccer server simulates the movement of the ball from one cycle to the next by adding the ball
velocity to its current position and by decreasing the velocity at a certain rate. Since the ball velocity
decays at the same rate in each cycle, it is possible to describe this movement model as a geometric
series in which the consecutive terms represent successive ball velocities during the movement. The
ratio r of the series is then equal to the value of the server parameter ball decay which represents
the velocity decay rate of the ball in each cycle. Clearly, this model can also be used to predict the
movement of the ball a number of cycles into the future. If a equals the ball velocity in the current
cycle then the velocity after n cycles will be equal to arn where r = ball decay. Since the ball
movement from one cycle to the next is obtained by adding the velocity vector to the current ball
position, we can also determine the distance that the ball has traveled during this period by adding
up the consecutive ball velocities. To this end we need to compute the sum of the geometric series.
Assuming that we want to know the distance that the ball has traveled over a period of n cycles,
this sum can be calculated as follows:

n
∑

i=0

ari = a · 1− r
n

1− r (6.55)

This gives us a simple closed formula for computing the traveled distance. Furthermore, it enables
us to predict future positions of the ball after an arbitrary number of cycles by adding the result of
(6.55) to the current ball position. This leads to the following formula for predicting the global ball
position (pt+nx , pt+ny ) after n cycles:

(pt+nx , pt+ny ) = (ptx, p
t
y) + π(vtr ·

1− ball decayn

1− ball decay
, vtφ) (6.56)

where (vtr, v
t
φ) denotes the ball velocity in cycle t in polar coordinates and where π is a function

that converts polar coordinates to Cartesian coordinates as shown in Equation 6.14. Note that for
the prediction we neglect the noise that is added to the movement of the ball since we cannot use
observations from the future to ‘filter’ this noise. The best prediction therefore lies at the mean of
the uniform noise distribution. Furthermore, we also neglect the fact that the ball might be kicked
by another player within n cycles since we have no knowledge about the intentions of other players.

• A method for predicting how long it will take a player to reach a certain position on the field. This
method receives a target position and a player as its only arguments and returns an estimate of the
number of cycles that the player will need to get from his current position to the target position.
The estimate is based on the fact that the maximum distance that a player can cover in one cycle
(neglecting noise and wind) equals the maximum player speed denoted by the server parameter
player speed max. Note that in general the player will not be able to cover this distance in every
cycle, since he needs to turn in the right direction (sometimes more than once due to the noise added
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to his motion) and cannot reach maximum speed with a single dash. A prediction for the number
of cycles n that a player needs to get from a position ~p to a position ~q is calculated as follows:

n = rint

( ‖~q − ~p‖
player speed max

+
|θ − (~q − ~p)φ|
TurnCorrection

)

(6.57)

where ‘rint’ is a function that rounds a value to the nearest integer, θ denotes the player’s global
body angle, (~q − ~p)φ corresponds to the global angle between ~p and ~q and TurnCorrection is a
parameter that represents a correction value for the number of cycles that the player needs to turn
in the right direction. Note that the resulting estimate is only intended as a rough approximation.

6.6 High-Level Methods

The agent world model also contains several high-level methods for deriving high-level conclusions from
basic world state information. These methods are used to gain more abstract knowledge about the state
of the world and to hide some of the soccer server details which influence the parameter values of action
commands. In this section we will describe the most important high-level methods that are contained in
the world model. These can be divided into five main categories:

• Methods that return information about the number of players in a certain area. These methods
receive a specific area description as their input and return a value denoting the number of teammates
and/or opponents that are located within the given area. This area can be either a circle, rectangle
or cone. Examples of such methods are getNrTeammatesInCircle and getNrOpponentsInCone.

• Methods that return the closest or fastest player to a certain position or object. These methods
receive a position or object on the field as input and return the closest or fastest player (either
teammate or opponent) to the given input argument. Examples are getClosestTeammateTo(x,y)

and getFastestOpponentTo(OBJECT BALL). The former can be determined by iterating over all the
teammates and by comparing their global positions to the given position13. The latter is computed
by iterating over future ball positions in steps of one cycle (using a geometric series as discussed in
Section 6.5) and by looking whether opponents can reach these positions before the ball does. The
first opponent that can reach a future ball position in an equal or smaller number of cycles than the
ball itself is considered to be the fastest opponent to the ball.

• Boolean methods that indicate whether a specific object satisfies a certain high-level constraint.
These methods can be used to determine the characteristics of a situation based on which the best
possible action can be chosen. The most important examples are:

– isBallKickable: returns true if the ball is located within the agent’s kickable range.

– isBallCatchable: returns true if the ball is located within the goalkeeper’s catchable range.

– isBallInOurPossesion: returns true if the fastest player to the ball is a teammate.

– isBallHeadingToGoal: returns true if the ball is heading towards the goal and has enough
speed to reach it (this is relevant knowledge for the goalkeeper).

– Several methods that return true when the current play mode satisfies a certain constraint.
Examples are: isFreeKickThem, isGoalKickUs, isKickInThem, etc.

13This is actually only done for those teammates for which the associated confidence is higher than a certain threshold
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• Methods that return information about angles between players in a certain area. Currently, this cat-
egory contains only a single method: getDirectionOfWidestAngleBetweenOpponents(a1,a2,d).
This method returns the global direction a from the interval [a1, a2] of the safest trajectory for the
ball between opponents that are located within a distance d from the current ball position. To this
end, the widest angle between opponents in the given area is determined after which the global
direction of the bisector of this angle is returned.

• Methods for computing the actual argument that should be supplied to an action command in order
to achieve the desired result. These methods use the known soccer server equations for manipulating
command parameters (see Section 3.4) and invert these equations to determine the parameter value
which produces the wanted effect. The most important examples are:

– getAngleForTurn(a). This method is needed because the actual angle by which a player turns
is not equal to the argument supplied to the turn command but depends on the speed of the
player. As the player moves faster it gets more difficult for him to turn due to his inertia.
This method receives the desired turn angle a as input and returns the angle value that must
be supplied to the turn command to achieve this. This value is computed according to the
following formula which is a direct result of inverting Equation 3.31 (neglecting noise):

turn parameter = a · (1.0 + inertia moment · ‖(vx, vy)‖) (6.58)

with inertia moment a server parameter denoting the player’s inertia and ‖(vx, vy)‖ equal to
the speed (scalar) of the player. Note that if the resulting turn parameter is larger than the
maximum turn angle (i.e. > 180 or < −180) then the argument supplied to the turn command
will be equal to this maximum angle (i.e. 180 or −180).

– getActualKickPowerRate(). This method is needed because the actual power with which a
player kicks the ball is not equal to the Power argument supplied to the kick command but
depends on the position of the ball relative to the player. For example, if the ball is located to
the player’s side and at a short distance away from him, the kick will be less effective than if
the ball is straight in front of him and close. This method uses the distance d between the ball
and the player and the absolute angle θ between the ball and the player’s body direction to
determine the actual kick power rate in the given situation. This value is computed according
to the following formula (based on (3.26) and (3.27)):

act kpr = kick power rate ·
(

1− 0.25 · θ

180
− 0.25 · d

kickable margin

)

(6.59)

with kick power rate a server parameter used for determining the size of the acceleration
vector and kickable margin a server parameter that defines a player’s kickable range.

– getKickPowerForSpeed(s). This method receives the desired speed s that the agent wants
to give to the ball on a kick and returns the kick power that must be supplied to the kick
command in order to achieve this. This value is computed as follows:

kick parameter =
s

act kpr
(6.60)

where ‘act kpr’ is the actual kick power rate as obtained from (6.59). Note that the kick
parameter can become larger than the maximum kick power. In this way, it is possible to
identify situations in which the desired speed cannot be reached (see Sections 7.2.8 and 7.3.5).

– getKickSpeedToTravel(d,e). This method returns the speed that has to be given to the ball
on a kick such that it has a remaining speed equal to e after traveling distance d. A geometric
series is used to predict the number of cycles n that the ball will need to cover distance d given
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an end speed of e. Note that we have to reason backwards here, i.e. the first term in the series
is denoted by the end speed e and the subsequent terms denote different speeds of the ball
before slowing down to e. The ratio r of the series is therefore equal to 1/ball decay in this
case. We have already seen in Section 6.5 that the traveled distance d amounts to the sum of
the consecutive velocities and thus to the sum of the terms in the series. In order to determine
the number of cycles n, we need to compute the length of the series given the first term e, ratio
r and sum d. This length can be calculated according to the following formula [109]:

n =
log(d·(r−1)

e
+ 1)

log(r)
(6.61)

The initial speed s that has to be given to the ball can now be calculated as follows:

s =
e

ball decayn
(6.62)

– getPowerForDash(x,y). This method receives a relative position (x, y) to which the agent
wants to move and returns the power that should be supplied to the dash command in order to
come as close to this position as possible. Since the agent can only move forwards or backwards,
the closest point to the target position that the agent can reach by dashing is the orthogonal
projection ~p of the target point onto the line l that extends into the direction of his body14

(forwards and backwards). Let d1 denote the distance from the agent’s current position to ~p and
d2 the maximum distance that a player can cover in one cycle (i.e. d2 = player speed max).
Then the distance that the agent wants to cover in the next cycle (and thus his desired speed)
equals d = min(d1, d2). In order to compute the acceleration that is required to achieve this, we
must subtract the agent’s current speed in the direction of his body (obtained by projecting the
current velocity vector onto l) from d since this distance will already be covered automatically.
The parameter for the dash command can then be calculated as follows:

dash parameter =
d− π(vr, vφ − θ)x

dash power rate · Effort (6.63)

with (vr, vφ) the agent’s global velocity in polar coordinates, θ the agent’s global body angle, π
a function that converts polar coordinates to Cartesian coordinates, dash power rate a server
parameter used for determining the size of the acceleration vector and Effort the current effort
value of the agent representing the efficiency of his actions (see Section 3.4.2). Note that if the
resulting dash parameter is larger than the maximum dash power then the argument supplied
to the dash command will be equal to this maximum power.

14This is the x-direction in the agent’s relative coordinate frame.
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Chapter 7

Player Skills

A skill can be regarded as the ability to execute a certain action. The behavior of an agent depends
on the individual skills that this agent can perform. In general, these skills can be divided into simple
skills that correspond to basic actions and more advanced skills that use the simple skills as parts of more
complex behaviors. The strategy of a team of agents can then be seen as the way in which the individual
agent behaviors are coordinated. In this chapter we will describe the skills which are available to the
agents of the UvA Trilearn 2001 robotic soccer simulation team. Together, these skills form a hierarchy
consisting of several layers at different levels of abstraction. The skills at the lowest level can be specified
in terms of basic action commands which are known to the soccer server, whereas the higher-level skills
use the functionality offered by the layer below to generate the desired behavior. The execution of each
skill is based on the current state of the world which is represented by the agent world model described in
Chapter 6. This chapter is organized as follows. In Section 7.1 we give an overview of the different skills
layers and present a notation that will be used throughout this chapter to define the various skills. In
Section 7.2 we then describe the low-level player skills followed by the intermediate player skills in Section
7.3. Finally, the high-level player skills are presented in Section 7.4. Note that the choice of which skill is
selected in a given situation depends on the strategy of the team which will be discussed in Chapter 9.

7.1 Introduction

The skills which are available to the UvA Trilearn agents include turning towards a point, kicking the
ball to a desired position, dribbling, intercepting the ball, marking opponents, etc. These skills can be
divided into different layers which together form a hierarchy of skills. Figure 7.1 shows the UvA Trilearn
skills hierarchy which consists of three layers. The layers are hierarchical in the sense that the skills in
each layer use skills from the layer below to generate the desired behavior. The bottom layer contains
low-level player skills which can be directly specified in terms of basic action commands known to the
soccer server. At this abstraction level the skills correspond to simple actions such as turning towards a
point. The middle layer contains intermediate skills which are based on low-level skills. The skills in this
layer do not have to deal with the exact format of server messages anymore but can be specified in terms
of the skills from the layer below. Finally, the skills at the highest level are based on intermediate skills.
The way in which a skill is executed depends on the arguments which are supplied to it. The skills at each
level receive one or more arguments of which the values depend on the current world state. The behavior
of the agent is the result of selecting an appropriate skill in a given situation. Note that the agent is
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Figure 7.1: The UvA Trilearn skills hierarchy consisting of three layers. The low-level skills are based
on soccer server commands, whereas the higher-level skills are based on skills from the layer below.

allowed to select skills from each layer and is not restricted to selecting high-level skills only. Which skill
is selected in a certain situation depends on the team strategy and will be discussed in a later chapter.

It is important to realize that the execution of each skill eventually leads to a basic soccer server action
command. For low-level player skills this mapping is clear since these can be directly specified in terms of
basic action commands. At the higher levels however, the skills are implemented in terms of various skills
from the level below and it then depends on the current situation which of these lower-level skills has to be
executed. For some high-level skills this choice depends on several configurable threshold parameters which
will be introduced later in this chapter. In our current implementation, the values for these parameters
have been based on test results and on observations made during practice games. Note that selecting a
skill will in itself only lead to the generation of a corresponding action command and not directly to its
execution. This makes it possible to adapt the command parameters at a later stage when necessary. This
can happen, for example, when an exhausted agent wants to move to his strategic position and has to
perform a dash command with full power in order to achieve this. Before executing the command, the dash
power will then be reduced thereby taking into account the agent’s current stamina (see Section 9.5.3).
Furthermore note that an agent will always commit to only a single action during each cycle regardless
of which skill has been selected. The agent thus makes no commitment to a previous ‘plan’, e.g. if he
executed part of a ball-interception skill in the previous cycle there is no guarantee that he will continue
to execute the next part in the current cycle. Instead, the situation is completely reevaluated before
each action opportunity and a skill is selected based on the current situation. This form of coordination
between reasoning and execution is referred to as weak binding [116] (see Section 4.4).

Throughout this chapter a detailed description of each available skill will be presented in the form of
equations and algorithms which use the information and methods available from the world model or one
of the utility classes (see Section 4.3). For this we will use the following notation:

• (ptx, p
t
y): the agent’s global position in cycle t. This will also be denoted by ~pt. Global positions of

other objects will generally be referred to as (qtx, q
t
y) or ~qt. Relative positions are indicated as q̃t.

• (vtx, v
t
y): the velocity of the agent in cycle t. This will also be denoted by ~vt. Velocities of other

objects will generally be referred to as (wtx, w
t
y) or ~wt.

• θt: the agent’s global neck angle in cycle t.
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• φt: the angle of the agent’s body relative to his neck in cycle t. Note that the agent’s global body
angle thus equals θt + φt.

• x̄t+i: the predicted value of x in cycle t+ i. Here x can be either a position (p for the agent, q for
other objects), a velocity (v for the agent, w for other objects), the agent’s global neck angle θ or
the agent’s body angle φ relative to his neck.

• χ(xt, cmd): a method that returns the predicted value of x in cycle t + 1 given the value for x in
cycle t after performing the action command cmd. These methods were described in Section 6.5.

• (vr, vφ): the vector ~v represented in polar coordinates, i.e. vr denotes the length of the vector and
vφ its global direction.

• π(r, φ): a method that converts polar to Cartesian coordinates as shown in Equation 6.14.

• ρ(v, α): a method that rotates the vector v over α degrees.

• ν(α): a method that converts a supplied angle α to an equivalent angle from the interval [−180, 180].
This will be referred to as the ‘normalization’ of the angle.

• τ(α): a method that returns the angle value that must be supplied to a turn command in order
to turn a player’s body by a desired angle α. This method τ corresponds to the getAngleForTurn

method which has been described in Section 6.6. The turn parameter is computed according to
Equation 6.58 taking into account the speed and inertia of the player. Note that the return value
will never exceed the maximum turn angle and will thus always come from the interval [−180, 180].
• δ(q̃): a method that returns the power that must be supplied to a dash command in order to come as

close to a desired relative position q̃ as possible. This method δ corresponds to the getPowerForDash
method which has been described in Section 6.6. The dash parameter is calculated according to
Equation 6.63 taking into account the velocity and effort value of the agent. Since the agent can
only move forwards or backwards, the closest point to the target position that he can reach by
dashing is the closest point to q̃ that lies in the continuation of his body direction. Note that the
return value will never exceed the maximum dash power as was explained in Section 6.6.

• λ(): a method that returns the actual kick power rate in a given situation. This method λ corresponds
to the getActualKickPowerRate method which has been described in Section 6.6. The actual kick
power rate is computed according to Equation 6.59 taking into account the position of the ball
relative to the agent. When this value is multiplied by the actual kick power on a kick this gives the
size of the resulting acceleration vector.

• κ(s): a method that returns the power that must be supplied to a kick command in order to give
a desired speed s to the ball on a kick. This method κ corresponds to the getKickPowerForSpeed

method which has been described in Section 6.6. The kick parameter is determined according to
Equation 6.60 taking the actual kick power rate into account. Note that the return value can exceed
the maximum kick power. This makes it possible to identify situations in which the desired speed
cannot be reached (see Sections 7.2.8 and 7.3.5).

• γ(d, e): a method that returns the initial speed that has to be given to the ball on a kick such
that it has a remaining speed equal to e after traveling distance d. This method γ corresponds to
the getKickSpeedToTravel method which has been described in Section 6.6. The initial speed is
calculated according to Equation 6.62 taking into account the velocity decay rate of the ball.

• ψ(αmin, αmax, d): a method that returns the global direction α from the interval [αmin, αmax] of
the bisector of the widest angle between opponents that are located within distance d from the ball.
This method ψ corresponds to the getDirectionOfWidestAngleBetweenOpponents method which
has been described in Section 6.6.
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• µ(α1, ..., αn): a method that returns the average of a given list of angles [α1, ... , αn]. Note that
computing the average of a list of angles is not trivial due to the fact that angles go from 0 to 360
degrees and then back to 0 again. The average of 1 degree and 359 degrees should thus be 0 and not
180. This ‘wrap around’ problem can be solved by calculating the average of the sines of the angles
as well as the average of the cosines of the angles. The true average angle can then be reconstructed
by computing the arc tangent of the quotient of these respective averages. The method µ is thus
implemented according to the following formula:

µ(α1, ..., αn) = ν(atan2(
1

n

n
∑

i=1

sin(αi),
1

n

n
∑

i=1

cos(αi))) (7.1)

where ‘atan2(x,y)’ is a function that computes the value of the arc tangent of x/y using the signs of
both arguments to determine the quadrant of the return value and where ν converts the resulting
angle to an equivalent angle from the interval [−180, 180] as defined above.

7.2 Low-level Player Skills

Low-level player skills correspond to simple individual actions which can be directly specified in terms of
basic action commands known to the soccer server. The way in which these actions are executed depends
on the current state of the agent and its environment. In this section we describe the low-level player skills
which are available to the UvA Trilearn agents. Each of these skills returns a basic action command of
which the correct parameter values depend on the current world state. Since there exists a direct mapping
between low-level player skills and basic action commands, these skills do not contain any complex decision
procedures. Instead, their implementation is completely based on the known soccer server specifications.

7.2.1 Aligning the Neck with the Body

This skill enables an agent to align his neck with his body. It returns a turn neck command that takes
the angle φ of the agent’s body relative to his neck as its only argument. Note that the angle φ can be
directly extracted from the agent’s world model. This leads to the following definition for this skill:

alignNeckWithBody() = (turn neck φt) (7.2)

7.2.2 Turning the Body towards a Point

This skill enables an agent to turn his body towards a given point. It receives a global position ~q on
the field and returns a turn command that will turn the agent’s body towards this point. To this end
the agent’s global position p̄t+1 in the next cycle is predicted based on his current velocity. This is done
to compensate for the fact that the remaining velocity will move the agent to another position in the
next cycle. The global angle (~q − p̄t+1)φ between the given position and the predicted position is then
determined after which the agent’s global body direction θt + φt is subtracted from this angle in order to
make it relative to the agent’s body. Finally, the resulting angle is normalized and supplied as an argument
to the τ method in order to compute the angle value that must be passed to the turn command. If the
speed and inertia of the agent make it impossible to turn towards the given position in a single cycle then
the agent turns as far as possible. This leads to the following definition for this skill:

turnBodyToPoint(~q) = (turn τ(ν((~q − p̄t+1)φ − (θt + φt)))) (7.3)
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7.2.3 Turning the Back towards a Point

This skill enables an agent to turn his back towards a given point ~q. The only difference between this skill
and turnBodyToPoint is that the angle (~q− p̄t+1)φ between the given position and the predicted position
of the agent in the next cycle is now made relative to the back of the agent by subtracting the agent’s
global back direction θt + φt + 180. This skill is used by the goalkeeper in case he wants to move back to
his goal while keeping sight of the rest of the field. It can be defined as follows:

turnBackToPoint(~q) = (turn τ(ν((~q − p̄t+1)φ − (θt + φt + 180)))) (7.4)

7.2.4 Turning the Neck towards a Point

This skill enables an agent to turn his neck towards a given point. It receives a global position ~q on
the field as well as a primary action command cmd that will be executed by the agent at the end of
the current cycle and returns a turn neck command that will turn the agent’s neck towards ~q. To this
end, the agent’s global position and neck direction after executing the cmd command are predicted using
methods from the world model. The global angle between the given position and the predicted position is
then determined after which the predicted neck direction is subtracted from this angle in order to make it
relative to the agent’s neck. Finally, the resulting angle is normalized and directly passed as an argument
to the turn neck command since the actual angle by which a player turns his neck is by definition equal
to this argument (see Section 3.4.5). If the resulting turn angle causes the absolute angle between the
agent’s neck and body to exceed the maximum value, then the agent turns his neck as far as possible.
Note that it is necessary to supply the selected primary command as an argument to this skill, since a
turn neck command can be executed in the same cycle as a kick, dash, turn, move or catch command
(see Section 3.4.9). Turning the neck towards a point can be defined as follows:

turnNeckToPoint(~q, cmd) = (turn neck ν((~q − χ(~pt, cmd))φ − χ(θt, cmd))) (7.5)

7.2.5 Searching for the Ball

This skill enables an agent to search for the ball when he cannot see it. It returns a turn command that
causes the agent to turn his body by an angle that equals the width of his current view cone (denoted by
the ViewAngle attribute in the AgentObject class; see Figure 6.2). In this way the agent will see an entirely
different part of the field after the turn which maximizes the chance that he will see the ball in the next
cycle. Note that the agent always turns towards the direction in which the ball was last observed to avoid
turning back and forth without ever seeing the ball. Let Sign be equal to +1 when the relative angle to
the point at which the ball was last observed is positive and −1 otherwise. The angle value that must
be supplied to the turn command in order to turn the desired angle can then be computed by supplying
(Sign·ViewAngle) as an argument to the τ method. This leads to the following definition for this skill:

searchBall() = (turn τ(Sign ·ViewAngle)) (7.6)

7.2.6 Dashing to a Point

This skill enables an agent to dash to a given point. It receives a global position ~q as its only argument
and returns a dash command that causes the agent to come as close to this point as possible. Since the
agent can only move forwards or backwards, the closest point to the target position that he can reach by
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dashing is the orthogonal projection of ~q onto the line that extends into the direction of his body (forwards
and backwards). The power that must be supplied to the dash command is computed using the δ method
which takes the position of ~q relative to the agent as input. This skill can then be defined as follows:

dashToPoint(~q) = (dash δ(~q − ~pt)) (7.7)

7.2.7 Freezing the Ball

This skill enables an agent to freeze a moving ball, i.e. it returns a kick command that stops the ball
dead at its current position. Since ball movement in the soccer server is implemented as a vector addition
(see Equation 3.20), the ball will stop in the next cycle when it is kicked in such a way that the resulting
acceleration vector has the same length and opposite direction to the current ball velocity. The desired
speed that should be given to the ball on the kick thus equals the current ball speed wt

r and the power that
must be supplied to the kick command to achieve this can be computed using the κ method. Furthermore,
the direction of the kick should equal the direction wt

φ of the current ball velocity plus 180 degrees. Note

that this direction must be made relative to the agent’s global body angle θt + φt before it can be passed
as an argument to the kick command. The following definition can be given for this skill:

freezeBall() = (kick κ(wtr) ν((wtφ + 180)− (θt + φt))) (7.8)

7.2.8 Kicking the Ball Close to the Body

This skill enables an agent to kick the ball close to his body. It receives an angle α as its only argument
and returns a kick command that causes the ball to move to a point at a relative angle of α degrees and
at a close distance (kickable margin/6 to be precise) from the agent’s body. To this end the ball has to
be kicked from its current position ~qt to the desired point relative to the predicted position p̄t+1 of the
agent in the next cycle1. An example situation is shown in Figure 7.2. In general, this skill will be used
when the agent wants to kick the ball to a certain position on the field which cannot be reached with a
single kick. Since the efficiency of a kick is highest when the ball is positioned just in front of the agent’s
body (see Section 3.4.1), calling this skill with α = 0 will have the effect that the agent can kick the ball
with more power after it is executed. In order to get the ball to the desired point in the next cycle, the
ball movement vector ~ut+1 must be equal to:

~ut+1 = p̄t+1 + π(player size+ ball size+ kickable margin/6, ν(θt + φt + α))− ~qt (7.9)

It follows from Equation 3.20 that the acceleration vector ~at resulting from the kick should then be:

~at = ~ut+1 − ~wt (7.10)

where ~wt denotes the current ball velocity. The power that must be supplied to the kick command to
achieve the desired acceleration can be computed by passing the length atr of the acceleration vector as
an argument to the κ method. The direction of the kick should equal the direction atφ of the acceleration

vector relative to the agent’s global body angle θt+φt. This leads to the following definition for this skill:

kickBallCloseToBody(α) = (kick κ(atr) ν((atφ − (θt + φt)))) (7.11)

Note that this skill will only be executed if it is possible to actually reach the desired ball position with
a single kick, i.e. if the return value of the κ method is smaller than or equal to the maximum kick
power. If the required power does exceed the maximum then the ball is frozen at its current position using
the freezeBall skill described in Section 7.2.7. In general, it will then always be possible to shoot the
motionless ball to the desired point in the next cycle.

1Note that the ball can go ‘through’ the agent as a result of the fact that positions are only updated at the end of each cycle.
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Figure 7.2: Example situation for the kickBallCloseToBody skill with α = 0. The acceleration vector
~at takes the current ball velocity ~wt into account to produce the movement vector ~ut+1. As a result, the
kick moves the ball from its current position to a position just in front of the predicted position of the
agent in the next cycle. The dotted circle indicates the agent’s kickable range in cycle t.

7.2.9 Accelerating the Ball to a Certain Velocity

This skill enables an agent to accelerate the ball in such a way that it gets a certain velocity after the
kick. It receives the desired velocity ~wd as its only argument and returns a kick command that causes the
ball to be accelerated to this velocity. The acceleration vector ~at that is required to achieve this equals:

~at = ~wd − ~wt (7.12)

where ~wt denotes the current ball velocity. If the power κ(a
t
r) that must be supplied to the kick command

to get the desired result does not exceed the maximum kick power then the desired velocity can be realized
with a single kick. The kick direction should then be equal to the direction atφ of the acceleration vector

relative to the agent’s global body angle θt + φt. This leads to the following definition for this skill:

accelerateBallToVelocity(~wd) = (kick κ(atr) ν(atφ − (θt + φt))) (7.13)

However, if the desired velocity is too great or if the current ball velocity is too high then the required
acceleration cannot be realized with a single kick. In this case, the ball is kicked in such a way that
the acceleration vector has the maximum possible length and a direction that aligns the resulting ball
movement with ~wd. This means that after the kick the ball will move in the same direction as ~wd but at
a lower speed. To this end, the acceleration vector has to compensate for the current ball velocity in the
‘wrong’ direction (y-component). This gives the following formula for computing the acceleration vector:

~at = π(λ() · maxpower, ν((~wd)φ − asin(
ρ(~wt,−(~wd)φ))y
λ() · maxpower )) (7.14)

The skill can then be defined as follows:

accelerateBallToVelocity(~wd) = (kick maxpower ν(atφ − (θt + φt))) (7.15)

7.2.10 Catching the Ball

This skill enables an agent to catch the ball and can only be executed when the agent is a goalkeeper. It
returns a catch command that takes the angle of the ball relative to the body of the agent as its only
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argument. The correct value for this argument is computed by determining the global direction between
the current ball position ~qt and the agent’s current position ~pt and by making this direction relative to
the agent’s global body angle θt + φt. This skill can be expressed by the following definition:

catchBall = (catch ν((~qt − ~pt)φ − (θt + φt))) (7.16)

7.2.11 Communicating a Message

This skill enables an agent to communicate with other players on the field. It receives a string message m
as its only argument and returns a say command that causes the message to be broadcast to all players
within a certain distance from the speaker. This skill can be defined as follows:

communicate(m) = (say m) (7.17)

7.3 Intermediate Player Skills

Intermediate player skills correspond to actions at a higher abstraction level than those presented in Section
7.2. The skills at this level do not have to deal with the exact format of server messages anymore but use
the low-level player skills to generate the desired behavior. In this section we describe the intermediate
player skills which are available to the UvA Trilearn agents. All of these skills eventually lead to the
execution of a basic action command which is generated by a skill from the layer below. In its simplest
form, an intermediate skill uses the current state of the environment to determine the correct argument
values with which a specific low-level skill has to be called. In most cases however, they also contain a
simple decision procedure for selecting among a small number of related skills. Note that the intermediate
skills themselves form parts of more complex high-level skills which will be discussed in Section 7.4.

7.3.1 Turning the Body towards an Object

This skill enables an agent to turn his body towards an object o which is supplied to it as an argument.
To this end, the object’s global position q̄t+1

o in the next cycle is predicted based on its current velocity.
This predicted position is passed as an argument to the turnBodyToPoint skill which generates a turn
command that causes the agent to turn his body towards the object. This leads to the following definition:

turnBodyToObject(o) = turnBodyToPoint(q̄t+1
o ) (7.18)

7.3.2 Turning the Neck towards an Object

This skill enables an agent to turn his neck towards an object. It receives as arguments this object o
as well as a primary action command cmd that will be executed by the agent at the end of the current
cycle. Turning the neck towards an object amounts to predicting the object’s global position q̄t+1

o in
the next cycle and passing this predicted position together with the cmd command as arguments to the
turnNeckToPoint skill. This low-level skill will then generate a turn neck command that causes the
agent to turn his neck towards the given object. Note that the cmd command is supplied as an argument
for predicting the agent’s global position and neck angle after executing the command. This is necessary
because a turn neck command can be executed in the same cycle as a kick, dash, turn, move or catch
command (see Section 3.4.9). The following definition can be given for this skill:

turnNeckToObject(o, cmd) = turnNeckToPoint(q̄t+1
o , cmd) (7.19)
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7.3.3 Moving to a Position

This skill enables an agent to move to a global position ~q on the field which is supplied to it as an argument.
Since the agent can only move forwards or backwards into the direction of his body, the crucial decision
in the execution of this skill is whether he should perform a turn or a dash. Turning has the advantage
that in the next cycle the agent will be orientated correctly towards the point he wants to reach. However,
it has the disadvantage that performing the turn will cost a cycle and will reduce the agent’s velocity
since no acceleration vector is added in that cycle2. Apart from the target position ~q, this skill receives
several additional arguments for determining whether a turn or dash should be performed in the current
situation. If the target point is in front of the agent then a dash is performed when the relative angle to
this point is smaller than a given angle α. However, if the target point is behind the agent then a dash
is only performed if the distance to this point is less than a given value d and if the angle relative to the
back direction of the agent is smaller than α. In all other cases a turn is performed. Figure 7.3 shows in
which situations the agent will turn or dash depending on the position of the target point.

α α

turn

turn

dashturn dash
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Figure 7.3: Situations in which the agent turns or dashes in the moveToPos skill assuming b = false.

Note that in the case of the goalkeeper it is sometimes desirable that he moves backwards towards his goal
in order to keep sight of the rest of the field. To this end an additional boolean argument b is supplied to
this skill that indicates whether the agent should always move backwards to the target point. If b equals
true then the agent will turn his back towards the target point if the angle relative to his back direction
is larger than α. In all other cases, he will perform a (backward) dash towards ~q regardless of whether
the distance to this point is larger than d. A complete definition for this skill is given in Algorithm 7.1.

moveToPos(~q, α, d, b)

ang = ν((~q − ~pt)φ − (θt + φt)), dist = (~q − ~pt)r
if b == true then

ang = ν(ang + 180) // always turn back to target point
if |ang| < α then

return dashToPoint(~q)
else

return turnBackToPoint(~q)
end if

else
if |ang| < α or (|ν(ang + 180)| < α and dist < d) then

return dashToPoint(~q)
else

return turnBodyToPoint(~q)
end if

end if

Algorithm 7.1: Pseudo-code implementation for moving to a desired position.

2Recall from Section 3.4.2 that the agent accelerates to maximum speed by executing a sequence of dash commands. Breaking
that sequence will slow him down after which he will need a few cycles to reach maximum speed again.
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7.3.4 Intercepting a Close Ball

This skill enables an agent to intercept a ball which is close to him. The objective is to move in such a
way that the ball will come within a small distance d from the agent in one or two cycles. To this end,
the prediction methods from the world model are used to predict the ball position in the next cycle and
two cycles into the future. It is then determined whether it is possible to move the agent within distance
d from one of these positions using all logical combinations of turn and dash commands. If it is not
possible to intercept the ball within two cycles then this skill returns an illegal command to indicate that
it cannot be performed. Note that the distance d is supplied as an argument to this skill. For field players
it is equal to the kickable distance, whereas for the goalkeeper the catchable distance is used.

First it is determined whether the agent can intercept the ball in one cycle. To this end, the position q̄t+1

of the ball in the next cycle is predicted and a calculation is performed to decide whether a single dash
can move the agent within distance d from this position. In order to be able to kick the ball efficiently
after intercepting it, it is important that the agent moves to a good position relative to the ball (i.e. the
ball must be in front of him). At the same time the agent must make sure that he does not collide with
the ball when trying to intercept it. Let l be a line that runs forwards and backwards from the predicted
position p̄t+1 of the agent in the next cycle into the direction of his body. This line thus denotes the
possible movement direction of the agent. Note that we have to use the agent’s predicted position in the
next cycle since his current velocity must be taken into account. In addition, let c be a circle which is
centered on the predicted ball position q̄t+1 and which has a radius equal to the sum of the radius of the
agent, the radius of the ball and a small buffer (kickable margin/6). It is now determined whether the
agent can intercept the ball in the next cycle by looking at the number of intersection points between l
and c. If l and c have exactly one point in common then this point is the desired interception point for
the next cycle. However, if the number of intersection points equals two then the desired point is the
one for which the absolute angle of the ball relative to that point is the smallest. This amounts to the
intersection point which is closest to the agent when the ball lies in front of him and to the furthest one
when the ball is behind his back. As a result, the desired interception point will always be such that the
agent has the ball in front of him in the next cycle. An example situation is shown in Figure 7.4. The
dashToPoint skill is then used to generate a dash command that will bring the agent as close as possible
to the desired point. Next, the position of the agent after executing this command is predicted and if it
turns out that this predicted position lies within distance d from the ball then the dash is performed.
However, if the predicted position is not close enough to the ball or if l and c have no points in common
then it is assumed that the ball cannot be intercepted with a single dash. In these cases, two alternatives
are explored to see if the ball can be intercepted in two cycles.
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Figure 7.4: Example situation for intercepting a close ball in one cycle. The agent moves along the line
l to one of the intersection points between l and c. In this case s1 is the desired interception point since
there the ball lies in front of the agent (α < β). The dotted circles indicate the agent’s kickable range.

The first alternative is to determine whether the agent can intercept the ball by performing a turn followed
by a dash. To this end, the global position q̄t+2 of the ball is predicted two cycles into the future and the
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turnBodyToPoint skill is used to generate a turn command that will turn the agent towards this point.
The agent’s position p̄t+1 after executing this command is then predicted after which the dashToPoint

skill is used to generate a dash command that will bring the agent as close as possible to q̄t+2. If it turns
out that the predicted position p̄t+2 of the agent after the dash lies within distance d from the ball then
the first command (i.e. the turn) in the sequence of two is performed. Otherwise, a second alternative
is tried to determine whether the agent can intercept the ball by performing two dash commands. To
this end the dashToPoint skill is used twice with the predicted ball position q̄t+2 after two cycles as its
argument on both occasions. If the predicted position p̄t+2 of the agent after these two dashes lies within
distance d from the ball then the first dash is performed. Otherwise, an illegal command is returned to
indicate that the skill cannot be performed. The close interception procedure is largely based on a similar
method introduced in [91]. A complete definition for this skill is given in Algorithm 7.2.

closeIntercept(d)

{try to intercept the ball in one cycle with a single dash}
l = line that goes through p̄t+1 into direction (θ̄t+1 + φ̄t+1)
c = circle centered on q̄t+1 with radius player size + ball size + kickable margin/6.
if number of intersection points between l and c is greater than zero then

determine intersection point si for which |(q̄t+1 − si)φ − (θ̄t+1 + φ̄t+1)| is minimal.
if (χ(pt, dashToPoint(si))− q̄t+1)r < d then

return dashToPoint(si)
end if

end if

{try to intercept the ball in two cycles with a turn followed by a dash}
p̄t+1 = χ(pt, turnBodyToPoint(q̄t+2))
p̄t+2 = χ(p̄t+1, dashToPoint(q̄t+2))
if (p̄t+2 − q̄t+2)r < d then

return turnBodyToPoint(q̄t+2)
end if

{try to intercept the ball in two cycles with two dashes}
p̄t+1 = χ(pt, dashToPoint(q̄t+2))
p̄t+2 = χ(p̄t+1, dashToPoint(q̄t+2))
if (p̄t+2 − q̄t+2)r < d then

return dashToPoint(q̄t+2)
end if

return CMD ILLEGAL

Algorithm 7.2: Pseudo-code implementation for intercepting a close ball.

7.3.5 Kicking the Ball to a Point at a Certain Speed

This skill enables an agent to kick the ball from its current position ~ot to a given position ~q in such a way
that it has a remaining speed equal to e when it reaches this position. In order for the ball to reach the
target position at the desired speed, the ball velocity ~wd after executing the kick must be equal to

~wd = π(γ((~q − ~ot)r, e), (~q − ~ot)φ) (7.20)
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However, it is possible that the ball cannot reach this velocity with a single kick either because the
magnitude of ~wd exceeds the maximum speed of the ball or due to the fact that the current ball speed in
combination with the position of the ball relative to the agent make it impossible to achieve the required
acceleration. If the magnitude of ~wd is larger than ball speed max it is certain that even in the optimal
situation (i.e. if the ball lies directly in front of the agent and has zero velocity) the agent will not be able
to kick the ball to the target position at the desired speed. In this case, the expected ball movement ūt+1

is computed after executing a kick with maximum power into the same direction as ~wd. If the magnitude
of the resulting movement vector is larger than a given percentage h of the maximum ball speed3 then
this kick is actually performed despite the fact that it cannot produce the wanted effect. Otherwise, the
agent shoots the ball close to his body and directly in front of him using the kickBallCloseToBody skill.
In this way he will be able to kick the ball with more power in the next cycle. However, if the magnitude
of ~wd is smaller than ball speed max it is possible to reach the target point at the desired speed in the
optimal situation. The acceleration vector ~at that is required to achieve this is then equal to

~at = ~wd − ~wt (7.21)

where ~wt denotes the current ball velocity. If the power that must be supplied to the kick command to
achieve this acceleration is less than or equal to the maximum power then the accelerateBallToVelocity
skill is used to perform the desired kick. Otherwise, the agent uses the kickBallCloseToBody skill to put
the ball in a better kicking position for the next cycle. Figure 7.5 shows an example situation in which
the kickTo skill is called in two consecutive cycles. In cycle t it is not possible to shoot the ball to the
point q at the desired speed due to the fact that the ball has too much speed in the wrong direction. The
agent therefore shoots the ball to a point just in front of him. In the next cycle he is then able to perform
the desired kick. A complete definition for the kickTo skill is given in Algorithm 7.3.

kickTo(q, e, h)

~wd = π(γ((~q − ~ot)r, e), (~q − ~ot)φ) // this is the desired ball velocity after the kick
if (~wd)r > ball speed max then

~at = π(λ() · maxpower, ν((~wd)φ − asin(
ρ(~wt,−(~wd)φ)y
λ()·max power

))) // see Equation 7.14

ūt+1 = ~at + ~wt
if (ūt+1)r > h · ball speed max then

return accelerateBallToVelocity(~wd) // shoot with maximum power in same direction as ~wd
else

return kickBallCloseToBody(0) // put the ball in a better position
end if

else
~at = ~wd − ~wt // this is the required acceleration vector
if κ(atr) < maxpower then

return accelerateBallToVelocity(~wd) // target can be reached
else

return kickBallCloseToBody(0) // put the ball in a better position
end if

end if

Algorithm 7.3: Pseudo-code implementation for kicking the ball to a desired point at a certain speed.

3In our current implementation h is usually equal to the threshold parameter KickMaxThr which has a value of 0.85.
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Figure 7.5: Example situation in which the kickTo skill is called in two consecutive cycles. In cycle t
the agent kicks the ball in front of his body causing the ball movement ~ut+1. In cycle t + 1 he is then
able to kick the ball towards ~q at the desired speed. Note that in this example the position of the agent
changes from cycle t to cycle t+ 1 due to his remaining velocity.

7.3.6 Turning with the Ball

This skill enables an agent to turn towards a global angle α while keeping the ball in front of him. It is
used, for example, when a defender has intercepted the ball in his defensive area and faces his own goal.
In this situation, the defender usually wants to pass the ball up the field into an area that is currently not
visible to him and to this end he will first use this skill to turn with the ball towards the opponent’s goal.
Turning with the ball requires a sequence of commands to be performed. The ball first has to be kicked
to a desired position relative to the agent, then it has to be stopped dead at that position and finally
the agent must turn towards the ball again. Each time when this skill is called it has to be determined
which part of the sequence still has to be executed4. This is done as follows. If the absolute difference
between the desired angle α and the global angle (~qt− ~pt)φ of the ball relative to the position of the agent
is larger than a given value k then the kickBallCloseToBody skill is used to kick the ball to a position
close to the agent and at the desired angle. Otherwise, it is checked whether the ball still has speed from
the previous action. If the remaining ball speed wtr exceeds a given value s then the ball is stopped dead
at its current position using the freezeBall skill. In all other cases the agent turns his body towards
the predicted position q̄t+1 of the ball in the next cycle. Note that in our current implementation k and
s are usually equal to the threshold parameters TurnWithBallAngle and TurnWithBallSpeed which have
respective values of 30 and 0.1. A complete definition for this skill is given in Algorithm 7.4.

turnWithBallTo(α, k, s)

if |(ν((~qt − ~pt)φ − α)| > k then
return kickBallCloseToBody(ν(α− (θt + φt)))

else if wtr > s then
return freezeBall()

else
return turnBodyToPoint(q̄t+1)

end if

Algorithm 7.4: Pseudo-code implementation for turning with the ball.

4Note that it is not always the case that the sequence will be finished. It is possible that during the sequence some external
event (e.g. an opponent coming close) causes the agent to decide upon another action (e.g. passing to a teammate).
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7.3.7 Moving to a Position While Staying on a Line

This skill enables an agent to move along a line l to a given position ~q on this line. It is used, for example,
by the goalkeeper who often wants to stay on a line in front of his goal and move to different positions on
this line depending on where the ball is located. Furthermore, it can also used by defenders for marking
an opponent player by moving along a line between this player and the ball. The idea is that the agent
must try to move as fast as possible to the desired point ~q along the line l thereby keeping the number of
turns to a minimum to avoid wasting cycles. Apart from the target position ~q, this skill receives several
additional arguments for determining whether the agent should turn or dash in the current situation.
Since the agent can only move forwards or backwards into the direction of his body, it is important that
he tries to keep the orientation of his body aligned with the direction of l in order to be able to move
quickly to the target point. A given angle α denotes the desired body angle (global) of the agent in the
point ~q. The line l can thus be defined as going through ~q and having global direction α. Due to the noise
that is added to the movement of the agent, the orientation of his body will never be exactly equal to α
and as a result the agent’s position will start to deviate from the line. Each time when this skill is called,
the agent’s desired orientation α is therefore slightly adjusted depending on his position with respect to l.
If the distance d between the agent’s current position ~p and the line l is smaller than a given value h then
α remains unchanged. However, if d exceeds h then α is adjusted in such a way that the agent will move
closer to l in subsequent cycles. This is done by either increasing or decreasing the desired orientation
α by αcorr degrees depending on which side of the line the agent is located and on a prediction of the
agent’s movement in the forthcoming cycles. This prediction is represented by a given value sign which
equals 1 if the agent is expected to move in the same direction as α and −1 if he will move in the opposite
direction. Adjusting α in this way has the effect that in subsequent cycles the agent will move closer to
the line again if this is necessary. The final decision whether to turn or dash is now made by comparing
the agent’s current body angle to the desired orientation α. If the absolute difference between these two
angles is larger than αthr degrees then the agent uses the turnBodyToPoint skill to turn in the desired
direction. Otherwise, the dashToPoint skill is called to move towards the target position.
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Figure 7.6: Example situation in which the moveToPosAlongLine skill is called in three consecutive
cycles. The agent wants to move to the point ~q while keeping sight of the ball.

Figure 7.6 shows an example situation in which this skill is called in three consecutive cycles. The agent
wants to move along the line l to the point ~q while keeping sight of the ball. The values for α and sign are
equal to −180 degrees and −1 respectively, indicating that the agent’s body should be turned towards the
left of the picture when he reaches ~q and that his movement in the following cycles will be in the opposite
direction. In cycle t the distance between the agent’s position ~pt and the line l is larger than h and the
agent’s body direction differs more than αthr degrees from the desired orientation α. The agent therefore
turns in positive (i.e. clockwise) direction to the corrected value of α. A backward dash in the next cycle
then moves him closer to both l and ~q. A complete definition for this skill is given in Algorithm 7.5.
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moveToPosAlongLine(~q, α, h, sign, αthr, αcorr)

l = line with global direction α that goes through ~q
~p ′ = perpendicular projection of the agent’s position ~pt onto l
dist = (~pt − ~p ′)r
if dist > h then

let m be the line through ~pt and the origin O and set ~s = intersection(m, l)
if (~pt −O)r < (~s−O)r then

side = 1 // the agent stands between O and l
else

side = −1 // l runs between O and ~pt
end if
α = α+ sign · side · αcorr // correct desired body angle

end if
if |ν(α− (θt + φt))| > αthr then

return turnBodyToPoint(~pt + π(1.0, α))
else

return dashToPoint(~q)
end if

Algorithm 7.5: Pseudo-code implementation for moving to a position along a line.

7.4 High-level Player Skills

High-level player skills correspond to actions at the highest abstraction level in the skills hierarchy depicted
in Figure 7.1. The skills at this level use the intermediate player skills presented in Section 7.3 to generate
the desired behavior. In this section we describe the high-level player skills which are available to the
UvA Trilearn agents. These skills use the current state of the world to decide which intermediate skill
has to be called and this eventually leads to the execution of a basic action command. In most cases, the
correct intermediate skill is chosen based on a number of configurable threshold parameters which will be
introduced throughout this section. In our current implementation the values for these parameters have
been based on experimental results and on observations made during test matches. It is important to
realize that high-level player skills cannot be regarded as strategic behaviors in themselves. Instead, they
are called as a result of a strategic decision making procedure which will be discussed in Chapter 9.

7.4.1 Intercepting the Ball

This skill enables an agent to intercept a ball at any distance. Intercepting the ball is one of the most
important available player skills that is frequently used by every type of player. If a player wants to kick
the ball he must always intercept it first, i.e. get close to it. The main objective is to determine the optimal
interception point based on the current position and velocity of the ball and to move to that point as
fast as possible in order to reach the ball before an opponent does. This obviously requires a sequence of
commands to be performed. Ball interception in the soccer server is not a straightforward task due to the
noise that is added to sensory observations and to the movement of the ball. This noise makes it difficult
to accurately predict the ball’s future trajectory and thus the optimal interception point. However, once
the interception point is determined it is important that it is a good estimate since the agent can only
move forwards and backwards into the direction of his body. If during an intercept sequence it turns out
that the chosen interception point is not well predicted then the agent is forced to turn towards a newly
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calculated point which will slow him down considerably. In [90] two possible methods are described for
equipping simulated soccer agents with the ability to intercept a moving ball:

1. An analytical method in which the ball velocity is estimated using past positions and in which the
future movement of the ball is predicted based on this velocity.

2. An empirical method in which a neural network is used to create a general ball-interception behavior
based on examples of successful interceptions.

Statistics presented in [90] show that the empirical method using a neural network gives slightly better
results than the analytical solution. It must be noted however, that the experiments performed to test
these methods were performed in an old version of the soccer server (version 2) in which a player did
not yet receive distance change and direction change information of dynamic objects and in which visual
information was sent to the players at larger intervals making an accurate prediction of the ball’s future
trajectory even more difficult. The above-mentioned results can therefore not be generalized to later
versions of the soccer server. It turns out that the results for the analytical method improve significantly
when visual messages are received more frequently and when change information about mobile objects
can be used to predict the velocity of the ball. The ball-interception skill used by the UvA Trilearn agents
is therefore based on the analytical method presented in [90].

When the ball-interception skill is called, it is first determined whether it is possible for the agent to
intercept the ball within two cycles using the intermediate player skill closeIntercept. When the agent
is a field player this skill takes the agent’s kickable range as its only argument, whereas for the goalkeeper
the catchable range is supplied (see Section 7.3.4). If it turns out that the ball cannot be intercepted
within two cycles then the agent uses an iterative scheme to compute the optimal interception point. A
loop is executed in which the prediction methods described in Section 6.5 are used to predict the position
q̄t+i of the ball a number of cycles, say i, into the future and to predict the number of cycles, say n,
that the agent will need to reach this position. This is repeated for increasing values of i until n < i
in which case it is assumed thay the agent should be able to reach the point q̄t+i before the ball does.
If at this point the value for i has become larger than InterceptMaxCycles (which has a value of 30 in
our current implementation) an illegal command is returned to indicate that the agent should not try to
intercept the ball. Otherwise, the point q̄t+i is chosen as the interception point and the moveToPos skill
is used to move towards this point. Recall from Section 7.3.3 that the decision whether to turn or dash
in the current situation depends on the angle of the target point relative to the agent’s body direction
and on the distance to the target point if it lies behind the agent. In this case, the moveToPos skill
uses the threshold parameters InterceptTurnAngle and InterceptDistanceBack to make this decision5. A
pseudo-code implementation for the ball-interception skill is given in Algorithm 7.6.

5In our current implementation these parameters have respective values of 7 degrees and 2 meters.
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intercept()

if agent == goalkeeper then
dist = catchable area l

else
dist = kickable distance // = player size + ball size + kickable margin

end if
command = closeIntercept(dist)
if command 6= CMD ILLEGAL then

return command
end if
i = 1
repeat
i = i+ 1
q̄t+i = predictGlobPosAfterNrCycles(OBJECT BALL, i) // see Section 6.5
n = predictNrCyclesToPoint(OBJECT AGENT, q̄t+i) // see Section 6.5

until n < i or i > InterceptMaxCycles
if i ≤ InterceptMaxCycles then

return moveToPos(q̄t+i, InterceptTurnAngle, InterceptDistanceBack, false)
else

return CMD ILLEGAL

end if

Algorithm 7.6: Pseudo-code implementation for intercepting the ball.

7.4.2 Dribbling

This skill enables an agent to dribble with the ball, i.e. to move with the ball while keeping it within a
certain distance. This amounts to repeatedly kicking the ball at a certain speed into a desired direction
and then intercepting it again. Two arguments, α and type, are supplied to this skill which respectively
denote the global direction towards which the agent wants to dribble and the kind of dribble that must
be performed. We distinguish three kinds of dribbling:

• DRIBBLE FAST: a fast dribble action in which the agent kicks the ball relatively far ahead of him.

• DRIBBLE SLOW: a slower dribble action in which the agent keeps the ball closer than on a fast dribble.

• DRIBBLE WITH BALL: a safe dribble action in which the agent keeps the ball very close to his body.

It is important to realize that this skill is only called when the ball is located within the agent’s kickable
range. This means that it is only responsible for the kicking part of the overall dribbling behavior, i.e.
it only causes the ball to be kicked a certain distance ahead into the desired direction α. If the absolute
angle between α and the agent’s body direction is larger than DribbleTurnAngle (which currently has a
value of 30 degrees) then the agent uses the turnWithBallTo skill to turn with the ball towards the global
angle α. Otherwise, he uses the kickTo skill to kick the ball into the desired direction towards a point
that lies a certain distance ahead depending on the type of dribble. After the kick, the ball will move out
of the agent’s kickable range and as a result the agent will try to intercept it using the intercept skill.
The dribbling skill can then be called again once the agent has succeeded in intercepting the ball. This
sequence of kicking and intercepting will repeat itself until the agent decides to perform another skill.
Note that during the dribble the power of a kick depends on the distance that the ball should travel and
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on the speed that it should have when it reaches the target point. In our current implementation this
speed equals 0.5 (=DribbleKickEndSpeed) for any type of dribble. Experiments have shown that lower
end speed values cause the agent to intercept the ball before it reaches the target point which slows the
dribble down significantly. A pseudo-code implementation for the dribbling skill is given in Algorithm 7.7.

dribble(α,type)

if type == DRIBBLE WITH BALL then
dist = DribbleWithBallDist // 2.0 in our current implementation

else if type == DRIBBLE SLOW then
dist = DribbleSlowDist // 3.0 in our current implementation

else if type = DRIBBLE FAST then
dist = DribbleFastDist // 7.0 in our current implementation

end if
if |ν((θt + φt)− α)| > DribbleTurnAngle then

return turnWithBallTo(α, TurnWithBallAngle, TurnWithBallSpeed)
else

return kickTo(~qt + π(dist, α), DribbleKickEndSpeed, KickMaxThr) // ~qt = current ball position
end if

Algorithm 7.7: Pseudo-code implementation for dribbling.

7.4.3 Passing the Ball Directly to a Teammate

This skill enables an agent to pass the ball directly to another player. It receives two arguments, o and
type, which respectively denote the object (usually a teammate) to which the agent wants to pass the ball
and the kind of pass (either normal or fast) that should be given. This skill uses the kickTo skill to pass
the ball to the current location ~qt of the object o with a certain desired end speed depending on the type
of pass. A pseudo-code implementation for this skill is given in Algorithm 7.8.

directPass(o,type)

if type == PASS NORMAL then
return kickTo(~qt, PassEndSpeed, KickMaxThr) // PassEndSpeed currently equals 1.4

else if type == PASS FAST then
return kickTo(~qt, FastPassEndSpeed, KickMaxThr) // FastPassEndSpeed currently equals 1.8

end if

Algorithm 7.8: Pseudo-code implementation for passing the ball directly to another player.

7.4.4 Giving a Leading Pass

This skill enables an agent to give a leading pass to another player. A leading pass is a pass into open
space that ‘leads’ the receiver, i.e. instead of passing the ball directly to another player it is kicked just
ahead of him. In this way, the receiver is able to intercept the ball while moving in a forward direction
and this will speed up the attack. This skill receives two arguments, an object o (usually a teammate) and
dist, which respectively denote the intended receiver of the leading pass and the ‘leading distance’ ahead
of the receiver. It uses the kickTo skill to pass the ball to a point that lies dist in front of the current
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position ~ot of o. Here ‘in front of’ means in positive x-direction, i.e. at a global angle of 0 degrees. In our
current implementation dist is usually equal to the parameter LeadingPassDist which has a value of 1.5
meters. Note that the desired end speed for a leading pass is always equal to PassEndSpeed (currently
1.4) since the leading aspect of the pass might cause the receiver to miss the ball when its speed is higher.
A pseudo-code implementation for this skill is given in Algorithm 7.9.

leadingPass(o,dist)

return kickTo(~ot + π(dist, 0), PassEndSpeed, KickMaxThr)

Algorithm 7.9: Pseudo-code implementation for giving a leading pass.

7.4.5 Passing the Ball into the Depth (Through Pass)

This skill enables an agent to give a more advanced type of pass called a through pass. With a through
pass the ball is not passed directly to another player or just ahead of him, but it is kicked into open space
between the opponent defenders and the opponent goalkeeper in such a way that a teammate (usually an
attacker) will be able to reach the ball before an opponent does. If a through pass is executed successfully
it often causes a disorganization of the opponent’s defense which will enable an attacker to get the ball
close to the enemy goal. This skill takes an object o (usually a teammate) as an argument which denotes
the intended receiver of the through pass. The position ~p on the field to which the ball should be kicked
is determined by drawing a line l from the object’s current position ~ot to a given point ~z (also supplied as
an argument) and by computing the safest trajectory for the ball to a point on this line. To this end, the
ψ function is used to calculate the widest angle between opponents from the current ball position ~qt to a
point ~p on l. After this, the speed that the ball should have when it reaches the point ~p is determined
based on the distance from the current ball position ~qt to ~p and on the number of cycles n that o will
need to reach ~p. If it turns out that the required end speed falls outside the range [MinPassEndSpeed,
MaxPassEndSpeed] it is set to the closest boundary of this range. The kickTo skill is then used to kick
the ball to the desired point ~p at the required speed. Two example situations are shown in Figure 7.7.
In Figure 7.7(a) the player with the ball cannot safely pass the ball directly to his teammate located at
the bottom of the picture and decides to give a through pass. As a result, the ball moves between the
opponent defenders to the other side of the field thereby disorganizing the opponent’s defense while the
team keeps possession of the ball. Figure 7.7(b) shows a situation in which the through pass leads to a
scoring opportunity. A pseudo-code implementation for through passing is given in Algorithm 7.10.
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(a) Disorganizing the opponent defenders.
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(b) Creating a scoring opportunity.

Figure 7.7: Two example situations for the throughPass skill. Red players are opponents.
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throughPass(o, ~z)

l = line segment that runs from ~ot (current position of o) to ~z
α = ψ((~ot − ~qt)φ, (~z − ~qt)φ, (~z − ~qt)r) // direction of widest angle between opponents
let m be the line that goes through ~qt into direction α and set ~p = intersection(m,l)
n = predictNrCyclesToPoint(o, ~p) // see Section 6.5
kick speed = min(ball speed max, getFirstInGeometricSeries((~p− ~qt)r, ball decay, n))
end speed = kick speed · ball decayn

if end speed < MinPassEndSpeed then
end speed = MinPassEndSpeed

else if end speed > MaxPassEndSpeed then
end speed = MaxPassEndSpeed

end if
return kickTo(~p, end speed, KickMaxThr)

Algorithm 7.10: Pseudo-code implementation for through passing.

7.4.6 Outplaying an Opponent

This skill enables an agent to outplay an opponent. It is used, for example, when an attacker wants to
get past an enemy defender. This is done by passing the ball to open space behind the defender in such a
way that the attacker can beat the defender to the ball. Note that the attacker has an advantage in this
situation, since he knows to which point he is passing the ball and is already turned in the right direction,
whereas the defender is not. As result, the attacker has a headstart over the defender when trying to
intercept the ball. Since a player can move faster without the ball, the main objective is to kick the ball
as far as possible past the opponent while still being able to reach it before the opponent does. This skill
receives two arguments, ~q and o, which respectively denote the point to which the agent wants to move
with the ball and the object (usually an opponent) that the agent wants to outplay in doing so. First it is
determined if it is possible to outplay the opponent o in the current situation. Let l be the line segment
that runs from the agent’s current position ~pt to the given point ~q. The best point to kick the ball to
will be the furthest point from ~pt on this line that the agent can reach before the opponent does. We use
a simple geometric calculation to find the point ~s on l which has equal distance to the agent and to the
opponent. Let ~o ′ be the perpendicular projection of the opponent’s position ~ot onto l and let d1, d2 and
d3 respectively denote the distance between ~pt and ~o

′, the distance between ~ot and ~o
′ and the distance

between ~o ′ and ~s (see Figure 7.8). To determine ~s, we need to compute the unknown value of d3 using
the values for d1 and d2 which can be derived from the world model. Since the distance from ~pt to ~s will
be equal to the distance from ~ot to ~s, the Pythagorean theorem guarantees that the following must hold:

d1 + d3 =
√

d2
2 + d2

3 ←→ d3 =
d2
2 − d2

1

2d1
(7.22)

Using this value for d3, we can compute the coordinates of the shooting point ~s as follows:

~s = ~pt + π(d1 + d3, (~q − ~pt)φ) (7.23)

However, in some situations it is not likely that shooting the ball to this point will eventually result
in outplaying the given opponent o on the way to ~q. We therefore use the values for d1, d2 and d3 to
determine whether it is possible to outplay o in the current situation, and if so, what the best shooting
point will be. The following situations are distinguished:

• d1 + d3 ≥ OutplayMinDist. Here OutplayMinDist is a parameter which has a value of 7.0 meters
in our current implementation. If this condition holds, the opponent is located at a relatively large
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Figure 7.8: Determining the optimal shooting point ~s when outplaying an opponent (red player) on the
way to ~q. The values for d1 and d2 are known and can be used to compute d3.

distance from the agent which makes an attempt to outplay him likely to be successful. First it is
checked whether the agent’s body is turned sufficiently towards the point ~q. If this is not the case
then the turnWithBallTo skill is used to turn with the ball in the right direction. Otherwise, the
kickTo skill is used to kick the ball to a point on the line l where the agent will be able to intercept
it first. Note that in general the agent will be able to reach the point ~s before the opponent despite
the fact that both players need to travel the same distance to this point. This is because the agent
has already turned his body more or less towards ~q (and thus towards ~s), whereas the opponent
probably has not. However, the actual point ~z to which the ball is kicked is chosen slightly closer to
the agent than the point ~s defined by (7.23) in order to be absolutely sure that he can intercept the
ball before the opponent does. This safety margin is represented by the parameter OutplayBuffer
which has a value of 2.5 meters in our current implementation. The shooting point ~z then becomes:

~z = ~pt + π(d1 + d3 −OutplayBuffer, (~q − ~pt)φ) (7.24)

For this skill the desired end speed when the ball reaches ~z equals OutplayKickEndSpeed (=0.5).
Note that the value for this parameter cannot be chosen too low, since this will cause the agent to
intercept the ball before it reaches the target point (see also Section 7.4.2).

• d1 + d3 < OutplayMinDist and d1 < d2. If this condition holds, the opponent is located close to
the agent which makes it difficult to outplay him. However, if the agent is already turned in the
right direction (i.e. towards ~q) then d1 < d2 implies that the distance between the opponent and the
line l (denoting the agent’s desired movement trajectory) is large enough for the agent to outplay
this opponent when the ball is kicked hard in the direction of ~q (i.e. further ahead than ~s). This is
because the agent can start dashing after the ball immediately, whereas the opponent still has to
turn in the right direction. As a result, the agent will have dashed past the opponent by the time
the latter has turned correctly and this puts him in a good position to intercept the ball before the
opponent. Therefore it is checked first whether the agent’s body is sufficiently turned towards ~q and
if this is not so then the turnWithBallTo skill is used to turn with the ball in the right direction.
Otherwise, the kickTo skill is used to kick the ball past the opponent. In this case the point ~z
to which the ball is kicked either lies OutplayMaxDist (=20) meters ahead of the agent’s current
position ~pt into the direction of ~q or equals ~q when the distance to ~q is smaller than this value.

• In all other cases (i.e. d1 + d3 < OutplayMinDist and d1 ≥ d2) this skill returns an illegal command
to indicate that it is not possible to outplay the opponent o on the way to the point ~q.

Figure 7.9 shows three steps in the process of outplaying an opponent on the way to a point ~q. In the first
situation (I) the distance between the agent and the opponent is quite large. However, if the agent would
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Figure 7.9: Three steps in the process of outplaying an opponent (red player) while moving with the
ball to a position ~q. Here ~s denotes the point along the desired trajectory which has equal distance to the
agent and to the opponent and ~z is the point to which the ball is actually kicked.

kick the ball directly towards the point ~q then the opponent would be able to intercept it first. The agent
therefore kicks the ball to the point ~z where he can reach it before the opponent can. After the kick, both
the agent and the opponent start moving towards the ball which the agent reaches first. This is shown in
the second situation (II). The opponent has now come close to the agent but is not orientated towards ~q.
The agent therefore decides to kick the ball hard to the point ~z and immediately starts to move after it.
Since the opponent still has to turn in the right direction he will lose time and this enables the agent to
dash past him. The result is depicted in the third situation (III) which shows that the opponent has been
successfully outplayed. A pseudo-code implementation for this skill is given in Algorithm 7.11.

outplayOpponent(~q, o)

l = line segment that runs from the agent’s current position ~pt to ~q
~o ′ = perpendicular projection of ~ot (current position of o) onto l
d1 = (~o ′ − ~pt)r, d2 = (~o ′ − ~ot)r, d3 = (d2

2 − d2
1)/2d1

if d1 + d3 ≥ OutplayMinDist then
~z = ~pt + π(d1 + d3 −OutplayBuffer, (~q − ~pt)φ)

else if d1 + d3 < OutplayMinDist and d1 < d2 then
~z = ~pt + π(min(OutplayMaxDist,(~q − ~pt)r), (~q − ~pt)φ)

else
return CMD ILLEGAL

end if
if |(~q − ~pt)φ − (θt + φt)| > OutplayTurnAngle then

return turnWithBallTo((~q − ~pt)φ, TurnWithBallAngle, TurnWithBallSpeed)
else

return kickTo(~z, OutplayKickEndSpeed, KickMaxThr)
end if

Algorithm 7.11: Pseudo-code implementation for outplaying an opponent.

7.4.7 Clearing the Ball

This skill enables an agent to clear the ball to a certain area on the field. It is useful, for example, when
a defender cannot dribble or pass the ball to a teammate in a dangerous situation. Using this skill he
can then kick the ball up the field away from the defensive zone. It is important to realize that this
skill is only called when the agent has no alternative options in the current situation. Clearing the ball
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amounts to kicking it with maximum power into the widest angle between opponents in a certain area.
The shooting direction is determined using the ψ function which returns the direction of the bisector of
this widest angle. The area on the field from which this angle is selected depends on the type of clear
which is supplied as an argument to this skill. We distinguish three types of clearing:

• CLEAR BALL DEFENSIVE: clearing the ball away from the defensive zone into a triangular area which
is defined by the current ball position ~qt and the center line on the field.

• CLEAR BALL OFFENSIVE: clearing the ball towards the offensive zone into a triangular area which is
defind by the current ball position ~qt and the line segment that coincides with the front line of the
opponent’s penalty area and extends to the left and right side lines.

• CLEAR BALL GOAL: clearing the ball into a triangular area in front of the opponent’s goal which
is defined by the current ball position ~qt and the line segment that runs from the center of the
opponent’s goal to the center of the front line of the penalty area.

An example of the clearing area for each type of clear is shown in Figure 7.10. The area starting from the
leftmost player corresponds to the CLEAR BALL DEFENSIVE type, whereas the areas drawn from the middle
and rightmost players correspond to the CLEAR BALL OFFENSIVE and CLEAR BALL GOAL types respectively.
A pseudo-code implementation for this skill is given in Algorithm 7.12.
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Figure 7.10: An example of the clearing area for each type of clear. From left to right the areas respec-
tively correspond to the CLEAR BALL DEFENSIVE, CLEAR BALL OFFENSIVE and CLEAR BALL GOAL types.

clearBall(type)

if type == CLEAR BALL DEFENSIVE then
~p1 = (0,−PITCH WIDTH/2), ~p2 = (0, PITCH WIDTH/2)

else if type == CLEAR BALL OFFENSIVE then
~p1 = (PENALTY X,−PITCH WIDTH/2), ~p2 = (PENALTY X, PITCH WIDTH/2)

else if type == CLEAR BALL GOAL and qty > 0 then
~p1 = (PENALTY X, 0), ~p2 = (GOAL LINE X, 0)

else if type == CLEAR BALL GOAL and qty ≤ 0 then
~p1 = (GOAL LINE X, 0), ~p2 = (PENALTY X, 0)

end if
αmin = (~p1 − ~qt)φ, αmax = (~p2 − ~qt)φ
αshoot = ψ(αmin, αmax,max((~p1 − ~qt)r, (~p2 − ~qt)r))
return kickTo(~qt + π(1.0, αshoot), ball speed max, KickMaxThr)

Algorithm 7.12: Pseudo-code implementation for clearing the ball.
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7.4.8 Marking an Opponent

This skill enables an agent to mark an opponent, i.e. to guard him one-on-one with the purpose to minimize
his usefulness for the opponent team. It can be used, for example, to block the path from the ball to an
opponent or from an opponent to the goal. In this way, the agent can prevent this opponent from receiving
a pass or from moving closer to the goal while also obstructing a possible shot. This skill amounts to
calculating the desired marking position based on the given arguments and then moving to this position.
It receives three arguments: an object o (usually an opponent) that the agent wants to mark, a distance
d representing the desired distance between o and the marking position and a type indicator that denotes
the type of marking that is required. We distinguish three types of marking:

• MARK BALL: marking the opponent by standing at a distance d away from him on the line between
him and the ball. In this case the marking position ~z is computed as follows:

~z = ōt+1 + π(d, (q̄t+1 − ōt+1)φ) (7.25)

where ōt+1 and q̄t+1 respectively denote the predicted positions of the opponent and the ball in the
next cycle. This type of marking will make it difficult for the opponent to receive a pass.

• MARK GOAL: marking the opponent by standing at a distance d away from him on the line between
him and the center point ~cg of the goal he attacks. The marking position ~z then becomes:

~z = ōt+1 + π(d, (~cg − ōt+1)φ) (7.26)

This type of marking will make it difficult for the opponent to score a goal.

• MARK BISECTOR: marking the opponent by standing at a distance d away from him on the bisector
of the ball-opponent-goal angle. The marking position ~z is now computed as follows:

~z = ōt+1 + π(d, µ((q̄t+1 − ōt+1)φ, (~cg − ōt+1)φ)) (7.27)

where the function µ computes the average of the angles which are supplied to it (see Section 7.1).
This type of marking enables the agent to intercept both a direct and a leading pass to the opponent.

Figure 7.11 shows the marking positions for each of these types of marking in an example situation.
The point ~z1 corresponds to the marking position for the MARK BALL type, whereas the points ~z2 and ~z3
correspond to the marking positions for the MARK GOAL and MARK BISECTOR types respectively.
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Figure 7.11: Three ways to mark an opponent. The marking positions ~z1, ~z2 and ~z3 respectively
correspond to the MARK BALL, MARK GOAL and MARK BISECTOR types of marking.

After determining the marking position ~z, the agent uses the moveToPos skill to move to this position.
Note that the decision whether to turn or dash in the current situation depends on the angle of ~z
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relative to the agent’s body direction and on the distance to ~z if this point lies behind the agent. In this
case, the moveToPos skill uses the threshold parameters MarkTurnAngle (=30) and MarkDistanceBack
(=3) to make this decision. The values for these parameters are such that the condition which must
hold for allowing a dash is fairly flexible. This is done because the marking position ~z will be different
in consecutive cycles due to the fact that the opponent and the ball move around from each cycle to
the next. As a result, the agent will be able to actually progress towards a point that lies close to ~z
instead of constantly turning towards the newly calculated marking position in each cycle. A pseudo-code
implementation for marking an opponent is given in Algorithm 7.13.

markOpponent(o, d, type)

if type == MARK BALL then
~z = ōt+1 + π(d, (q̄t+1 − ōt+1)φ)

else if type ==MARK GOAL then
~z = ōt+1 + π(d, (~cg − ōt+1)φ)

else if type == MARK BISECTOR then
~z = ōt+1 + π(d, µ((q̄t+1 − ōt+1)φ, (~cg − ōt+1)φ))

end if
return moveToPos(~z, MarkTurnAngle, MarkDistanceBack, false)

Algorithm 7.13: Pseudo-code implementation for marking an opponent.

7.4.9 Defending the Goal Line (Goaltending)

This skill enables an agent (usually the goalkeeper) to defend his own goal line. To this end, the agent
moves to a position ~z along a line l which runs parallel to the goal line at a small distance d (supplied
as an argument) from the goal. The guard point ~z to which the agent moves depends on the predicted
position q̄t+1 of the ball in the next cycle and is chosen in anticipation of a future shot on goal. This means
that the guard point is selected in such a way that it will be most difficult for the opponent team to pass
the goalkeeper. To find this point we need to look at the angle that the ball makes with respect to the
left and right goalposts and we need to determine which point on l covers this angle in the most optimal
way. Let k and m be the line segments that run from the predicted ball position q̄t+1 to the left and right
goalposts respectively and let ~s1 and ~s2 be the intersection points between k and l and between m and l.
Furthermore, let d1 and d2 be the distances from q̄t+1 to ~s1 and from q̄t+1 to ~s2. The optimal guard point
~z on l can then be defined as the point on l for which the ratio between the distances e1 and e2 from ~z to
~s1 and from ~z to ~s2 is equal to the ratio between d1 and d2. In this way the distance that the goalkeeper
must travel on l to intercept the ball is proportional to the distance that the ball must travel before it
crosses l. Note that in our current implementation the goalkeeper always stays in front of the goal-mouth
to avoid leaving an open goal when the ball is passed to an opponent in the center of the penalty area. The
computed guard point is therefore adjusted if it lies too far to the side6. After computing the guard point
~z, the goalkeeper needs to move to this point while keeping sight of the ball. If the distance between the
current goalkeeper position ~pt and the line l is larger than DefendGoalLineMaxDist (which currently has a
value of 3.0 meters) the moveToPos skill is used to move directly towards ~z. This can happen, for example,
when the goalkeeper has moved forward from his line to intercept the ball and now has to move back to
his line again. Note that the fourth argument supplied to the moveToPos skill equals true to indicate that
the goalkeeper wants to turn his back to ~z in order to keep the ball in sight while moving. However, if
the distance between ~pt and l is less than DefendGoalLineMaxDist then the moveToPosAlongLine skill is
used to move along l to the point ~z. Recall from Section 7.3.7 that this skill receives an argument ‘sign’

6Note that this also protects the goalkeeper from moving very far to the side if the ball lies behind the line l.
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representing a prediction of the agent’s future movement. This value is used to adjust the agent’s body
direction when necessary. In this case it can be expected that the goalkeeper will move along l in the
same direction as the ball and ‘sign’ is therefore determined by looking at the ball velocity ~wt in cycle t.

Figure 7.12 shows an example situation in which the goalkeeper (green player) is positioned at the optimal
guard point on the line l. Note that the goalkeeper’s body is aligned with l to enable him to move quickly
along this line while keeping the number of turns to a minimum. However, the movement noise introduced
by the soccer server will cause him to deviate from l as he moves. The body direction of the goalkeeper is
therefore slightly adjusted in the moveToPosAlongLine skill as soon as this deviation becomes too large.
This will enable him to move back towards l in subsequent cycles. Note that if the goalkeeper’s body
would be orientated more towards the center of the field it would also be harder for him to intercept a
shot on goal since he would then need to turn to the right direction first. By aligning his body with l
however, he is able to move immediately to the intersection point between l and the trajectory of the ball
without turning. A pseudo-code implementation for this skill is given in Algorithm 7.147.
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Figure 7.12: The optimal guard point on the line l in an example situation. It holds that d1

d2
= e1

e2
.

defendGoalLine(d)

l = line parallel to the goal line at distance d from the goal
k = line segment from q̄t+1 to left goalpost, m = line segment from q̄t+1 to right goalpost
~s1 = intersection(k,l), ~s2 = intersection(m,l), d1 = (q̄t+1 − ~s1)r, d2 = (q̄t+1 − ~s2)r
~z = ~s1 + π(d1·(~s2−~s1)r

d1+d2
, (~s2 − ~s1)φ) // the desired guard point

if |zy| > GOAL WIDTH/2 then
zy = sign(zy)· GOAL WIDTH/2 // sign(x) = 1 if x ≥ 0 and −1 otherwise

end if
if (ptx − zx) > DefendGoalLineMaxDist then

return moveToPos(~z, DefendGoalLineTurnAngle, DefendGoalLineDistanceBack, true)
else
α = sign(qty − zy) · 90 // desired orientation in the point ~z (keeping the ball in sight)
sign = sign(wty) // ~wt = ball velocity in cycle t
return moveToPosAlongLine(~z, α, DefendGoalLineDeviationDistance, sign,

DefendGoalLineTurnThr, DefendGoalLineCorrectionAngle)
end if

Algorithm 7.14: Pseudo-code implementation for defending the goal line.

7DefendGoalLineTurnAngle, DefendGoalLineDistanceBack, DefendGoalLineDeviationDistance, DefendGoalLineTurnThr and
DefendGoalLineCorrectionAngle have respective values of 15.0, 10.0, 0.75, 4.0 and 10.0 in our current implementation.



Chapter 8

Agent Scoring Policy

One of the main objectives in a soccer game is to score goals. It is therefore important for a robotic soccer
agent to have a clear policy about whether he should attempt to score in a given situation, and if so,
which point in the goal he should aim for. In this chapter we describe the implementation of the scoring
policy that was used by the UvA Trilearn agents during the RoboCup-2001 world championship. This
scoring policy enables an agent to determine the best target point in the goal, together with an associated
probability of scoring when the ball is shot to this point. It is partly based on an approximate method
that we have developed for learning the relevant statistics of the ball motion which can be regarded as a
geometrically constrained continuous-time Markov process. This method has led to the publication of a
paper titled ‘Towards an Optimal Scoring Policy for Simulated Soccer Agents’ [49] which has been accepted
at the 7th International Conference on Intelligent Autonomous Systems (IAS-7) and which serves as the
basis of this chapter (see also [22]). As such, we consider this chapter to be one of the main contributions
of this thesis. It is organized as follows. In Section 8.1 we provide a general introduction to the scoring
problem and show that it can be decomposed into two independent subproblems. A solution to each of
these subproblems is presented in Sections 8.2 and 8.3. In Section 8.4 we then describe how these solutions
can be combined to determine the best scoring point. Several remarks about the implementation of our
scoring policy are included in Section 8.5 which also presents results concerning its performance. Finally,
Section 8.6 contains an overall conclusion and briefly discusses possible extensions.

8.1 The Optimal Scoring Problem

An important decision for a robotic soccer agent is which action to choose when he has control of the ball.
Possible options could be, for example, passing the ball to a teammate, dribbling with the ball, shooting
the ball at the goal or clearing the ball up the field. Especially the decision whether to shoot at the goal or
not can be a crucial one since scoring goals is one of the main objectives in a soccer game. It is therefore
important for a robotic soccer agent to have a clear policy about whether he should attempt to score in
a given situation, and if so, which point in the goal he should aim for. Ideally, the decision whether to
shoot to the goal should be based on the probability of scoring given the current state of the environment.
To achieve this, one will need to solve a problem which will be referred to as the optimal scoring problem
and which can be stated as follows: find the point in the goal where the probability of scoring is the highest
when the ball is shot to this point in a given situation. It can be expected that the probability of scoring
will at least depend both on the position and angle of the ball with respect to the goal and on the position

135
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of the goalkeeper relative to the ball. However, solving the optimal scoring problem is not straightforward.
The reason for this is that the total number of possible situations is extremely large1 and that different
variables can be decisive for different situations. Furthermore, the problem depends on many uncertain
factors. For example, the noise in the ball movement can never be exactly predicted and will be different
for different distances that the ball travels. To find the optimal scoring point by iterating over all possible
goal points one thus has to take different functions into account, since the distance from the shooting
position to the scoring point will be different for each point in the goal. On top of this, the behavior of
the opponent goalkeeper cannot be easily predicted but is an important factor for solving the problem.
As a result, no simple analytical solution to the problem exists and one has to look for different methods.

A key observation for solving the optimal scoring problem is that it can be decomposed into two indepen-
dent subproblems:

1. Determining the probability that the ball will enter the goal when shot to a specific point in the
goal from a given position.

2. Determining the probability of passing the goalkeeper in a given situation.

To solve the optimal scoring problem we thus have to find solutions to these two subproblems and combine
them. Since the subproblems are independent, the probability of scoring when shooting at a certain point
in the goal is equal to the product of the two probabilities. In the remainder of this chapter we will
describe a statistical framework for computing these probabilities. Before we do this however, we need to
mention a number of simplifying assumptions that have been made in our solution to the scoring problem.

Firstly, we assume that the ball is always shot to the goal with maximum power giving it an initial velocity
of 2.7 (meters per simulation cycle) in the current version of the soccer server (7.x). When the ball is shot
with less power its velocity will obviously be lower and as a result the movement noise per cycle will be
less. In this case however, the ball will need more cycles to reach the target point and the movement noise
will thus be added more often. The interaction between these factors slightly complicates the problem
and since shooting to the goal with maximum power is the common case in practice, we have decided to
make this assumption. Secondly, we have chosen to neglect the possibility that other players besides the
goalkeeper are blocking the path to the goal. The reason for this is that it is much easier for the goalkeeper
to intercept the ball than for a regular field player due to the fact that the goalkeeper is allowed to catch
the ball. Furthermore, players from different teams do not intercept the ball equally well. Finding a
correct interpretation of the angle between a goalkeeper and a field player when it comes to determining a
safe trajectory for the ball is thus not straightforward. It is clear however, that the goalkeeper’s superior
interceptive capabilities make passing him the main objective and we have therefore chosen to neglect
regular field players in our solution to the scoring problem. Finally, we also assume in our experiments
that the ball is always shot from a distance smaller than 32 meters from the target point in the goal.
This amounts to approximately one-third of the total field length (pitch length=105 meters). Since the
distance that the ball will travel when it is shot with maximum power equals about 45 meters (neglecting
movement noise; see Section 3.4.1), it will then never be the case that the ball comes to a halt before it has
reached the goal. Note that this assumption will yield a good approximation since it is almost impossible
to score from larger distances anyway due to the fact that the goalkeeper usually has enough time in these
cases to intercept the ball before it reaches the goal line. Although it is fairly straightforward to relax
these assumptions and extend the method appropriately, we have chosen not to do this to avoid having
to concentrate on details for situations which rarely occur.

1With the current server parameter values for pitch length (=105m) and pitch width (=68m) and with the current precision
of visual observations (one decimal for coordinates and rounded to the nearest integer for angles), the perceived state space
consists of more than 10226 states when only positions and orientations of body and neck are considered: each of the 22
players and the ball can be in any of 680 × 1050 positions and each player can have any of 360 body orientations and 180
possible neck angles. The state space becomes even larger when velocities and physical parameters are also considered.
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8.2 The Probability that the Ball Enters the Goal

If there were no noise in the movement of the ball, it would always enter the goal when shot to a point
inside the goal from a given position. However, due to the limited goal width and the noise introduced by
the soccer server, the ball may miss the goal on an attempt to score. In this section we will show how one
can determine the probability that the ball will end up somewhere inside the goal when shot at a specific
goal point. To this end we first need to compute the deviation of the ball from the aiming point. This
deviation is caused by the noise which is added to the ball velocity vector in each simulation cycle. Recall
from Section 3.3 that the ball velocity (vt+1

x , vt+1
y ) in cycle t+ 1 is equal to ball decay·(vtx, vty) + (r̃1, r̃2)

where r̃1 and r̃2 are random numbers uniformly distributed over the interval [−rmax, rmax] with rmax
= ball rand·‖(vtx, vty)‖. Here ball decay and ball rand are server parameters which have respective
values of 0.94 and 0.05. Note that the ball motion can be regarded as a diffusion process since the position
of the ball in each time step diffuses over time. We can treat it as a Markov process because the future
development is completely determined by the present state and is independent of the way in which the
present state has developed, i.e. the ball velocity in cycle t+ 1 depends only on the current ball velocity
and makes no reference to the past. Since the statistical properties of the process will be different for each
time step, the process is called non-stationary2.

An interesting aspect of the soccer server is that, although the underlying noise statistics for ball motion
are known, finding an analytical solution of the corresponding diffusion process is difficult for two reasons:

• The motion noise which is added by the server in each cycle is by construction non-white due to the
fact that this noise depends on the speed of the ball in the previous cycle as shown above.

• The process is geometrically constrained since the ball must end up inside the goal.

This makes an analytical computation of the process statistics nontrivial. When we treat ball motion as
a continuous-time Markov process, computing the exact statistics for each time step would require the
solution of a corresponding Fokker-Planck equation for diffusion with drift [30, 66]. The non-white noise
complicates this however. Furthermore, this will lead to a solution which is not generic but dependent
on the current server parameter values. To avoid both problems, we propose to learn the ball motion
statistics from experiments and to calculate the required probabilities from these statistics. This gives an
approximate solution to the problem of computing the statistical properties of a geometrically constrained
continuous-time Markov process and we believe that this relatively simple alternative, which also allows
for an easy adaptation when the server noise parameters change, can be useful in other applications as
well (e.g. Brownian motion problems3 [66]).

Our solution thus amounts to estimating the cumulative noise directly from experiments. To this end, we
computed the deviation of the ball perpendicular to the shooting direction as a function of the distance
that the ball had traveled. This function was learned by repeating an experiment in which the ball was
placed at even distances between 0 and 32 meters in front of the center of the goal (zero y-coordinate) with
a player directly behind it. The player then shot the ball 1,000 times from each distance with maximum
power and perpendicularly to the goal line (i.e. towards the center of the goal). An example of this setup
is depicted in Figure 8.1. For each instance we recorded the y-coordinate of the point on the goal line
where the ball entered the goal. We then used these values to compute the sample standard deviation σ

of the ball, which for n zero-mean points xi is equal to σ =
√

1
n

∑n
i=1 x

2
i . As expected, we saw that the

2A stochastic process x(t) is called stationary if its statistical properties are invariant to a shift of the origin. This means
that the processes x(t) and x(t + c) have the same statistics for any c.

3The term Brownian motion is used to describe the movement of a particle in a liquid, subjected to collisions and other forces.
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Figure 8.1: Experimental setup for learning the cumulative noise in the ball motion as a function of the
traveled distance. The ball lies in front of the center of the goal at an even distance d (between 0 and 32
meters) from the goal line. The agent stands directly behind the ball and shoots it with maximum power
to the point ~cg. The motion noise will cause the ball to deviate from the desired trajectory (dotted line).

cumulative noise was different for each distance d. We empirically found that the standard deviation σ of
the ball perpendicular to the shooting direction was a monotone increasing function of the distance. To a
good approximation this function could be represented by the following formula:

σ(d) = −1.88 · ln(1− d/45) (8.1)

where ‘ln’ denotes the natural logarithm. Note that this formula can only be used for distance values d
between 0 and 32. No assumptions can be made for distances outside this interval, since no data were
collected for these situations. Figure 8.2 shows a plot of the function together with the recorded deviation
values. A qualitative explanation of this result is as follows. In each cycle the ball will have a remaining
speed which is equal to 94% of its speed in the previous cycle. As the speed of the ball decreases, more
cycles will thus be needed for it to travel the same distance. Since noise is added in each cycle, this
means that the noise will be added to the ball motion more often. Although the added noise in each cycle
decreases with decreasing speed, the results indicate that the cumulative noise for traveling a particular
distance increases monotonically. The surprisingly simple formula of σ as a function of d implies that
the standard deviation of the process increases linearly with time. This can be shown by solving the
differential equation of the forward motion of the ball (ignoring noise) and expressing time as a function
of the distance. The result contrasts with most Brownian motion problems for which σ(t) = O(

√
t) [66].

We expect that this difference can be mainly attributed to the non-white motion noise.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

travelled distance (d)

st
an

da
rd

 d
ev

ia
tio

n 
(σ

)

measured standard deviation σ
modelled σ: −1.88*ln(1.0−d/45.0)

PSfrag replacements

l
d
lp
lb
p
p′

f
g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d)
dr
dl
sl
sr

3σ(dl)
3σ(dr)

20 meters

Figure 8.2: Standard deviation of the ball as a function of the traveled distance.
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The next step is to compute the distribution of the ball when it reaches the goal line. For this we use a
fundamental result from probability theory called the Central Limit Theorem. This theorem states that
under certain conditions the distribution of the sum of N random variables xi will be Gaussian as N
goes to infinity [30]. Several versions of the Central Limit Theorem exist which have been proved under
different conditions. In its most common form (due to Lindeberg [58]) the theorem has been shown to
hold for sequences of mutually independent random variables with a common distribution. It is clear that
this version does not apply to our current situation, since the motion noise in cycle t depends on the speed
of the ball in cycle t− 1. The required condition of independence is thus not satisfied in our case. It must
be noted however, that the dependency is represented by the server parameter ball rand which currently
has a value of 0.05. This low value will cause only a slight dependence and we can therefore expect the
independence condition to approximately hold. Furthermore, more general versions of the Central Limit
Theorem exist (see [31]) which do not require a common distribution and even weaken the assumption of
independence by allowing the xi to be dependent as long as they are not ‘too’ dependent. Since the latter
seems to be the case for the current problem, we can use this result to find a model for the distribution of
the ball along the goal line. We note that the deviation of the ball is caused by noise which is added in each
cycle and under the present conditions we can expect from the Central Limit Theorem that, whatever the
distribution of this noise is, the cumulative noise will be approximately Gaussian. Moreover, this Gaussian
g must have a zero mean and a standard deviation σ = σ(d) from (8.1). This gives the following model:

g(y;σ) =
1

σ
√
2π

exp

(

− y2

2σ2

)

(8.2)

Using this model, we can compute the probability that the ball will end up inside the goal when shot from
an arbitrary position on the field perpendicularly to the goal line. This probability equals the area that
lies under the respective Gaussian density function in between the two goalposts as is shown in Figure
8.3(a). When the y-coordinates of the left and right goalposts are respectively denoted by yl and yr with
yl < yr, this can be computed as follows:

P(goal) =

∫ yr

yl

g(y;σ) dy =

∫ yr

−∞

g(y;σ) dy −
∫ yl

−∞

g(y;σ) dy = G(yr;σ)−G(yl;σ) (8.3)

where G(y;σ) denotes the cumulative distribution function of the Gaussian g(y;σ). Note that G(y;σ) can
be implemented using the erf function which is defined in most mathematical libraries4.

Finally, we have to compute the probability that the ball enters the goal when shot at an angle to the goal
line (see Figure 8.3(b)). This case is somewhat more involved than the previous one due to the fact that
the noise can cause the ball to travel different distances before it reaches the goal. Since different traveled
distances imply different deviations according to (8.1), the ball distribution along the goal line is no longer
Gaussian and this makes an exact calculation of the total probability difficult. A detailed analysis would
involve bounding the corresponding diffusion process appropriately and computing the statistics for this
bounded process which is a formidable task. However, the key observation is that we want to compute
probability masses and that for equal masses the particular shape of the distribution that produces these
masses is irrelevant. This observation directly motivates our solution to the problem: instead of computing
the distribution of the ball along the goal line analytically (by solving the constrained diffusion process
equations) and then integrating to find its probability mass between the two goalposts, we compute the
probability mass from the identity

P(goal) = 1− P(not goal) (8.4)

where P(not goal) denotes the probability that the ball misses the goal, either going out from the left or
the right goalpost. This probability mass is easier to compute, to a good approximation, from the tails

4Including the math.h library in C and C++.
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(a) Shooting perpendicularly to the goal line.

������������

���������������������
���������������������
���������������������

�������������������
�������������������
�������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�


PSfrag replacements

l
d
lp
lb
p
p′

f
g

h
a
b

∆x
∆y

(ptx, p
t
y)

(qtx, q
t
y)

(qt−1
x , qt−1

y )

qrx
qry
vrx
vry

vrxerx
vrxery
vryerx
vryery

∆r
∆φ · r

r
~at

~ut+1

~wt
s1
s2
c

~wt+1

~at+1

~ut+2

~q
~pt

~pt+1

~pt+2

~ot
~ot+1

~ot+2

h
~p

~z
m
~o ′

~s
d1

d2

d3

~z1
~z2
~z3
e1
e2
~s1
~s2
~cg
yl
yr

−3σ(d) dr

dl

sl

sr

3σ(dl)

3σ(dr)

20 meters

(b) Shooting at an angle to the goal line.

Figure 8.3: Two situations of shooting at the goal (light gray) together with the associated distributions.

of the Gaussian distributions corresponding to the two goalposts. This is shown in Figure 8.3(b): when
the ball reaches the left goalpost it has effectively traveled distance dl and its corresponding distribution
perpendicular to the shooting line is Gaussian with deviation σ(dl) from (8.1). The probability that the
ball misses the goal going out from the left goalpost is approximately5 equal to the shaded area on the
left in Figure 8.3(b), i.e.

P(out from left) ≈
∫ −sl

−∞

g(y;σ(dl)) dy (8.5)

where the integration runs up to −sl which denotes the (negative) shortest distance from the left goalpost
to the shooting line. The situation that the ball misses the goal going out from the right post is analogous.
The only difference is that the ball will have to travel a larger distance in this case. As a result, its deviation
will be larger and the corresponding Gaussian will be flatter as can be seen in Figure 8.3(b). The respective
probability is approximately equal to the shaded area on the right, i.e.

P(out from right) ≈
∫ ∞

sr

g(y;σ(dr)) dy (8.6)

where the integration now runs from sr, the shortest distance from the right goalpost to the shooting
line, and where the Gaussian has a standard deviation σ(dr) which is obtained from (8.1) for a traveled
distance dr. Based on (8.4), the probability that the ball ends up inside the goal can now be written as

P(goal) = 1− P(out from left)− P(out from right) (8.7)

which can be directly computed using Equations 8.5 and 8.6.
5There is a small probability that the ball ends up to the right of the left goalpost after traveling an ‘illegal’ trajectory outside
the field. The ball thus actually went out from the left in this case but we neglect this probability in (8.5).
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8.3 The Probability of Passing the Goalkeeper

Intercepting a moving ball is much easier for the goalkeeper than for a regular field player. The reason for
this is that the goalkeeper is allowed to catch the ball, whereas a field player can only kick it. Since the
catchable distance for a goalkeeper is larger than the kickable distance for a field player, this means that a
field player must come closer to the ball in order to intercept it than the goalkeeper does. On an attempt to
score a goal, these superior interceptive capabilities make passing the opponent goalkeeper one of the main
objectives. In this section we present an approach for estimating the probability of passing the goalkeeper
in a given situation. To be exact, the second subproblem in the optimal scoring task can be stated as
follows: given a shooting point in the goal, determine the probability that the goalkeeper intercepts the ball
before it reaches the goal line. We propose an empirical method for learning this probability from examples
of successful and unsuccessful scoring attempts. Clearly, the problem depends heavily on the behavior of
the opponent goalkeeper and unless a provably optimal goalkeeper behavior has been implemented (which
is currently not the case) the experiments have to be based on existing goalkeeper implementations. In our
experiments we have used the goalkeeper of RoboCup-2000 winner FC Portugal 2000, since it appeared
to be one of the best available goalkeepers.

To cast the problem into a proper mathematical framework, we note that ball interception by the goal-
keeper on a scoring attempt can be regarded as a two-class classification problem: given the shooting
point in the goal together with the positions of the goalkeeper and the ball (input feature vector), predict
which class (intercepting or not) is most probable. Moreover, we are interested in the posterior probability
associated with the prediction of each class. Formalizing the problem in this way allows for the direct
application of various methods from the field of statistical pattern recognition [82]. To collect a training
set, we performed an experiment in which a player repeatedly shot the ball from a fixed position straight
to the goal, while the goalkeeper was placed randomly at different positions relative to the ball. The setup
for this experiment is shown more precisely in Figure 8.4. A data set was formed by recording 10,000
situations, together with a boolean indicating whether the goalkeeper had intercepted the ball or not. An
analysis of the resulting data revealed that the relevant features for classification were the following6:

• The absolute angle a between the goalkeeper and the shooting point as seen by the striker.

• The distance d between the ball and the goalkeeper.
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Figure 8.4: Experimental setup for learning the probability of passing the goalkeeper in a given situation.
The ball lies in front of the center of the goal at a distance of 20 meters from the goal line. The striker
(yellow player) stands directly behind the ball and shoots it with maximum power towards the point ~cg.
The goalkeeper (purple player) is placed at a random position inside the shaded area, i.e. at an angle
between 0 and 45 degrees and a distance between 3 and 15 meters from the ball.

6Principled methods for automatic feature extraction are described in [82].



CHAPTER 8. AGENT SCORING POLICY 142

These two values form a two-dimensional feature vector on which the classification has been based. The
recorded data set is depicted in Figure 8.5(a) which shows that there is an almost linear discriminant
function between the two classes. We determined this discriminant function via linear regression on the
boolean class indicator. This procedure is known to give the optimal Fisher’s Linear Discriminant which
has the property that it maximizes the ratio of the between-group variance and the within-group variance
for the two classes. Details and definitions for this linear discrimination method can be found in [82]. The
resulting discriminant function is characterized by the equation

u = (a− 26.1) ∗ 0.043 + (d− 9.0) ∗ 0.09− 0.2

= 0.043 ∗ a+ 0.09 ∗ d− 2.1323 (8.8)
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(a) Data set and discriminant function.
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(b) 1-D class histograms.
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(c) Gaussian approximations near discriminant.
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(d) Estimated posterior probability of non-interception.

Figure 8.5: Data set for the goalkeeper interception experiment together with derived statistics.
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for distance values d between 3 and 15. This can be interpreted as follows: for a new angle-distance pair
(a, d), the sample mean (26.1, 9.0) is subtracted from it after which the inner product (projection) with the
vector (0.043, 0.09) is computed. The resulting vector stands perpendicular to the discriminant boundary
which is shifted appropriately by the offset −0.2. The pairs (a, d) for which Equation 8.8 equals zero form
the boundary between the two classes. This is plotted by a dotted line in Figure 8.5(a).

Projecting all the (ai, di) pairs perpendicularly to the discriminant line via Equation 8.8 gives a set of
one-dimensional points ui that, to a good approximation, describe the two classes. The histogram class
distributions of these points are plotted in Figure 8.5(b). The upper histogram in this figure corresponds
to the situations in which the goalkeeper did not succeed in intercepting the ball and the lower one to the
situations in which he did intercept it. Instead of trying to model these two distributions parametrically,
we note that the relevant range for classification is only where the two histograms overlap, i.e. the interval
[−0.5, 0.5]. It is easy to see that the posterior probability of non-interception will be zero for approximately
u ≤ −0.5, one for u > 0.5 and will increase smoothly from zero to one in the interval in between. The
posterior probability can thus be represented by a sigmoid. A principled way to find this sigmoid would
be to optimize the unknown parameter with respect to the likelihood using a procedure known as logistic
discrimination [82]. This amounts to fitting a posterior sigmoid with maximum likelihood directly from
the available data. However, the low-dimensionality of the problem allows us to propose the following
simpler solution. In the region where the class distributions for interception and non-interception overlap,
we fit a univariate Gaussian function on each class as shown in Figure 8.5(c). For each class C this gives
us a Gaussian model for the class-conditional density function P(u|C). With this model we can easily
compute the posterior probability P(C|u) for a class C using the Bayes rule

P(C|u) =
P(u|C) P(C)

P(u|C) P(C) + P(u|C̄) P(C̄) (8.9)

which is a sigmoid-like function. Since this is a simple two-class classification problem, C̄ refers to the
‘other’ class in this case, while the prior probability P(C) for a class C is computed as the proportion of
points ui in the data set which belong to C. In Figure 8.5(d) we have plotted the posterior probability
for the non-interception class as given by the Bayes rule, together with the sigmoid approximation

P(pass goalkeeper | u) =
1

1 + exp(−9.5u) (8.10)

which allows for an easy implementation.

8.4 Determining the Best Scoring Point

Having computed the probability that the ball will end up inside the goal (Equation 8.7) and the probability
that the goalkeeper will not intercept it (Equation 8.10), the assumption of independence gives the total
probability of scoring in a given situation as the product of these two values. In order to determine
the best scoring point in the goal, we discretize the goal interval [−goal width/2 , goal width/2]7 and
compute the total probability that the ball will end up in each discretized bin. This total probability is
a bell-shaped function which represents the probability that the ball will enter the goal and which has a
valley around the position of the goalkeeper. The best scoring point is determined by the global maximum
of this curve. Note that the curve will always have two local maxima which correspond to the left and
right starting point of the valley. These maxima can be located by using a simple hill-climbing search
algorithm [84]: starting from the position of the goalkeeper (lowest point in the valley) we move to the

7The parameter goal width has a value of 14.02 in the current version of the soccer server.
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left and to the right along the curve as long as the function value increases. Of the two peaks which are
found in this way, the highest one denotes the global maximum and is selected as the best scoring point.

8.5 Implementation and Results

The scoring policy which has been described in this chapter has been implemented with a small number
of modifications to improve the overall quality of the result in various situations. These modifications are
needed because several aspects of our current solution to the optimal scoring problem are too specific.
Especially our solution to the second subproblem (probability of passing the goalkeeper) is based on a
number of assumptions which are not general. For example, the experiment described in Section 8.3 (see
Figure 8.4) for learning the single probability of passing the goalkeeper in a given situation is always
performed with the striker at a fixed distance of 20 meters from the center of the goal. As a result, the
value returned by Equation 8.10 actually represents the probability that the goalkeeper will not intercept
the ball before it has traveled a distance of 20 meters. However, using this definition in situations where
the striker stands close to the goal can give inaccurate results since the ball might have already crossed
the goal line before it will be intercepted by the goalkeeper. When the distance between the striker and
the scoring point is less than 20 meters, the returned probability for passing the goalkeeper is thus too
low. Furthermore, the probability of passing the goalkeeper has been solely based on the goalkeeper of
RoboCup-2000 winner FC Portugal. As a result, unnecessary risks might be taken with other goalkeepers
which are often not so good. To compensate for these factors we made the following adjustments:

• If the ball is located within a distance of 20 meters from the scoring point, we first determine if it is
theoretically possible for the goalkeeper to intercept it. This is done by computing the intermediate
positions of the ball in each cycle before it reaches the goal line and by checking for each of these
positions if in the optimal case the goalkeeper can reach it in time. To this end, the distance
between the goalkeeper and the calculated ball position is compared to the maximum distance that
the goalkeeper can cover in the given number of cycles. If it turns out that the goalkeeper will never
be able to intercept the ball before it reaches the goal line, the returned probability of passing the
goalkeeper is adjusted to 1.0. In all other cases this probability remains unaltered.

• To compensate for lower-quality goalkeepers and for the fact that the returned probability of passing
the goalkeeper is too low if the distance to the scoring point is less than 20 meters, we only consider
scoring points for which the respective single probability that the ball will enter the goal is larger
than a specified threshold. This threshold is represented by the parameter EnterGoalThr which has
a value of 0.7 in our current implementation. This ensures that the probability of the ball ending
up inside the goal will be high enough, independent of the particular goalkeeper behavior.

We have incorporated our scoring policy into the agent’s main decision loop as follows. When the agent
has control of the ball, he first checks whether the probability of scoring is larger than a certain threshold.
This threshold is represented by the parameter ScoringProbThr which has a value of 0.9 in our current
implementation. If the total scoring probability exceeds the threshold then the agent tries to score by
shooting the ball with maximum power towards the best scoring point. Otherwise he considers different
options, such as passing to a teammate or dribbling with the ball, which he performs when the predicted
success rate is high enough. However, when all possible alternatives fail and the agent stands at a close
distance to the goal, he decides to shoot to the best scoring point anyhow.

Figure 8.6 shows two successive situations which were taken from a real match played by UvA Trilearn
(yellow team). In Figure 8.6(a) the player with the ball stands to the left of the goal which is covered
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(a) Goalkeeper covers goal well. Through pass is given.
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(b) Goalkeeper outplayed. Good chance to score.
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(c) Low scoring probability for all goal points.
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(d) High scoring probability in right half of goal.

Figure 8.6: Two successive match situations together with the associated scoring probability curves.
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well by the opponent goalkeeper. This player therefore decides to give a through pass to the right wing
attacker who is in a better position. Figure 8.6(b) shows the situation a few cycles later. The right wing
attacker has now intercepted the ball and has a good chance to score. The scoring probability curves which
correspond to these situations are shown in Figures 8.6(c) and 8.6(d). In these figures the horizontal axis
represents the y-coordinate on the goal line to which the ball is shot. Note that the left and right goalposts
are respectively located at y-coordinates -7.01 and 7.01. Figure 8.6(c) shows that in the first situation the
total scoring probability (solid line) is very low for all the points on the goal line8 and the player with the
ball thus rightly decides not to shoot to the goal. However, several cycles later the situation is completely
different. The right wing attacker now has a high probability of scoring in the right half of the goal due to
the fact that the goalkeeper stands too far to the left. In Figure 8.6(d) the right slope of the total scoring
probability is bounded by the probability that the ball enters the goal, whereas the left slope is bounded
by the probability that the goalkeeper intercepts the ball. Since the total scoring probability equals 1.0
for y-coordinates around 3.0, the striker decides to shoot there (and scores as a result).

The scoring policy described in this chapter was used by UvA Trilearn at the RoboCup-2001 robotic soccer
world championship. Table 8.1 shows statistics concerning the percentage of successful scoring attempts
for the top four teams in this tournament. The percentages are based on all the matches that were played
by these teams during the second group stage and double elimination stage of the competition. The results
show that during these stages the success rate for UvA Trilearn was higher than for the other three teams.
It must be noted however, that it is difficult to compare the percentages due to the fact that the different
teams use different attacking strategies. Furthermore, the statistics are based on different matches against
different opponents and the decision whether to shoot to the goal or not is likely to be based on different
factors for each team. The Brainstormers, for example, might try to score even when the probability of
success is moderate. It is impossible however, to deduce the intentions of other players by observing their
behavior and these factors have therefore not been incorporated into the results. Nevertheless, the results
show that the UvA Trilearn agents manage to score a high percentage of their attempted goal shots.

Team Attempts Success Percentage

Tsinghuaeolus 70 56 80.00%
Brainstormers 39 23 58.97%
FC Portugal 93 72 77.42%
UvA Trilearn 42 34 80.95%

Table 8.1: Percentage of successful scoring attempts for the top four teams at RoboCup-2001. These
statistics were generated by RoboBase, a logplayer and analysis tool for RoboCup logfiles [87].

8.6 Conclusion

In this chapter we have described a methodology that allows a simulated soccer agent to determine
the probability of scoring when he shoots the ball to a specific point in the goal in a given situation.
The single probability that the ball enters the goal (first subproblem) depends on the values of various
server parameters which control the movement noise of the ball, the size of the goal, etc. The approach
presented in Section 8.2 is general in the sense that it enables one to ‘learn’ this probability even when these
server parameter values change (e.g. in a future version of the server). However, the single probability of
passing the goalkeeper (second subproblem) depends on the opponent goalkeeper and different goalkeepers

8Note that the noise in the ball movement causes a non-zero scoring probability when the ball is shot to a point just outside
the goal. In our implementation these points are never selected however, since we only consider points on the goal line for
which the single probability of entering the goal is more than 0.7 (=EnterGoalThr).
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exhibit different behaviors. In our current implementation, we have based this probability entirely on the
goalkeeper of RoboCup-2000 winner FC Portugal. Since this is a good goalkeeper, the approach presented
in Section 8.3 is useful against other goalkeepers as well. Ideally however, the probability of passing the
goalkeeper should be adaptive and the model should incorporate information about the current opponent
goalkeeper instead of using that of a particular team. The desired case would be to let the model adapt itself
during the game, using little prior information about the current goalkeeper. This is a difficult problem
because learning must be based on only a few scoring attempts. It is therefore important to extract
the most relevant features and to parametrize the intercepting behavior of the opponent goalkeeper in a
compact manner that permits on-line learning (e.g. through the use of statistics collected by the coach).

Another drawback in our solution to the second subproblem is that the set-up for the learning experiment
is such that it includes a fixed distance to the scoring point. Consequently, Equation 8.10 actually reflects
the probability that the ball will travel a distance of a least 20 meters before it is intercepted by the
opponent goalkeeper. In the current setup this result cannot be generalized for different distances. When
the distance to the scoring point is smaller, for example, the goalkeeper might be able to intercept the
ball before it has traveled 20 meters but not before it crosses the goal line. The returned probability of
passing the goalkeeper will thus always be too low in these cases. Conversely, the returned probability
will always be too high when the distance to the scoring point is larger: it is possible that the goalkeeper
intercepts the ball before the goal line after it has traveled more than 20 meters.

A better solution would clearly be to adapt the learning experiment by randomly placing the ball at
different distances to the goal and to incorporate an extra feature into the model which represents the
distance to the scoring point. This will slightly complicate the problem however, since the separation
between the two classes will no longer be linear. We have therefore chosen to base the classification on
two features only (angle and distance to the goalkeeper) and to fix the distance to the scoring point at 20
meters in our experiment. Note that the resulting model yields a good approximation since this distance
is about equal to the average shooting distance. More importantly, this distance also provides a clear
cut-off point between two distinct classes of situations. The first class represents samples in which the
goalkeeper is able to intercept the ball quickly before it has traveled a large distance. This happens, for
example, when the goalkeeper stands close to the ball trajectory. When this is not the case however, the
high speed of the ball resulting from the kick usually causes it to move past the goalkeeper. As a result, the
goalkeeper must run after the ball and can only catch up with it when its speed has decreased sufficiently.
In these cases, which are represented by the second class, the goalkeeper will need more time to intercept
the ball and during this time the ball travels a large distance. It is important to realize that nearly every
scoring attempt which occurs during a match belongs to one of these classes. Moreover, we empirically
found that a traveled distance of about 20 meters clearly separated one class from the other. We can
therefore expect that (8.10) provides a good approximation of the non-interception posterior probability.
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Chapter 9

Team Strategy

In Chapters 6 and 7 we have discussed the most important aspects of an individual agent: the world
model he creates based on his perceptions and the skills he can perform. The behavior of an agent can
be defined as the bridge between these two components. It determines which skill is selected in a given
situation based on information from the world model. In a robotic soccer game however, each agent is
part of a team which consists of 11 agents that must cooperate to achieve a common goal. Although
perception and action are local for each agent, they should thus also be part of a larger collaborative plan
which is shared by all the teammates. In this chapter we describe the team strategy of the UvA Trilearn
2001 soccer simulation team. We will focus on team behaviors and address various issues concerning the
coordination and cooperation between individual agents. The chapter is organized as follows. In Section
9.1 we provide a general introduction and list the most important aspects of a multi-agent soccer strategy.
Team formations are introduced in Section 9.2 together with the strategic positioning mechanism which
is used by the agents. In Section 9.3 we discuss our use of heterogeneous players followed by a description
of the UvA Trilearn communication model in Section 9.4. Section 9.5 is devoted to the topic of action
selection. Since the development of the action selection procedure for the agents has been an incremental
process, this procedure is explained for the UvA Trilearn team by means of several intermediate teams
from which this team has evolved. Results showing the effectiveness of the implementations described in
earlier sections are presented in Section 9.6. Section 9.7 contains a number of concluding remarks.

9.1 Introduction

The strategy of a team of agents can be defined as the collective plan which is followed in trying to achieve
a common goal with the available resources. For a soccer team this amounts to the way in which the
different players in the team should act to accomplish their common goal of winning the game. Once a
soccer agent is able to execute certain individual skills he must learn to act strategically as part of the
team. This means estimating the long-term effects of actions in the context of a soccer game and selecting
a skill which best serves the purpose of the team. The behavior of each individual agent constitutes a
mapping from perceptions to actions: each agent builds a world model based on his perceptions and uses
this model to select an appropriate action in a given situation. The decision which skill to execute depends
on the strategy of the team which can be seen to define the way in which the individual agent behaviors
are coordinated. As a result, cooperation between the agents will emerge from this strategy. We consider
the most important aspects of a multi-agent soccer strategy to be the following:
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• The strategy must specify the formation of the team and the position of the agents inside this
formation. Furthermore, it can define which formations are appropriate for which game situations.

• The strategy must define different roles inside a formation and assign these roles to various player
positions. It should also indicate which kinds of heterogeneous players are useful for which roles.

• For each type of player (defender, midfielder, etc.) the strategy must specify the behavior which is
associated with his current role. A defensive player, for example, should play more conservatively
than an attacking player and as a result should consider different actions.

• The strategy must incorporate information about how an agent should adapt his behavior to the
current situation. The action that an agent chooses, for example, should depend on which part of
the field he is currently located and on the positions of other teammates and opponents.

• The strategy must specify how to coordinate individual agent behaviors. This is important since
team members may otherwise not agree on the current strategy or on the mapping from teammates
to roles within this strategy. Although the results will not immediately be disastrous if different
agents temporarily adopt different strategies, the team members are more likely to achieve their
goal if they can stay coordinated. Possible ways to achieve this coordination are via pre-defined
information which is known to all the teammates and through the use of communication.

• The strategy must indicate how each player should manage his stamina during a game. For example,
when a player is tired he should not make a run for the ball unless this is absolutely necessary.

Furthermore, the strategy of a team of agents can also be influenced by various external factors. Some of
these factors which should be considered are the following:

• The strength of the opponent team. A strategy which is successful against a weak opponent will not
necessarily work against a stronger team. An important difference in this respect is the accuracy
with which certain actions must be performed. When the opponent players are good at intercepting
the ball, for example, it is important that the ball is passed accurately if the team wants to keep
possession. Against a weaker team however, it is often possible to pass with more risk.

• The type of opponent (i.e. their playing style). Against an offensive team one should adopt a different
strategy than against a defensive team.

• The state of the game. The strategy of the team can be related to the current score. For example, if
the team is leading towards the end of the game it is possible to switch to a more defensive strategy
in order to preserve the advantage. If the team is trailing near the end however, it could decide to
start taking more risks in an attempt to make up the deficit.

• The current game situation. A team should focus on their defense if the opponent team is building
up a dangerous attack, whereas the team’s behavior can be more aggressive when a teammate has
possession of the ball inside the opponent’s penalty area.

• The available resources. Since the soccer server makes use of randomly generated heterogeneous
players, it is important to adapt the team strategy to the current player types. Depending on the
available player types it must be decided which types are selected and which role they must fulfill
inside the current formation. Furthermore, if it turns out that certain players are performing badly
(e.g. become tired too quickly) they must be substituted. Note that these choices can be based on
the current state of the game or on the playing style of the opponent team.
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The problem that will be addressed in this chapter is how to incorporate these aspects into a common
strategic framework. It must be noted however, that our initial decision to build the team from scratch
has forced us to spend the majority of our time on the implementation of low-level and intermediate level
issues such as perception and actuator control, world modeling and skills execution. As a result, the high-
level team strategy has received less attention and although it contains all the necessary components to
put up a working soccer team, the setup is not as profound as that for the lower levels. The main principle
is that we make a distinction between active and passive situations for each agent depending on whether
he currently has an active role in the game or not. In general, a player is in an active situation when he is
located near the ball and in a passive situation otherwise. If an agent is in a passive situation he moves to
a strategic position on the field in anticipation of the possibility of becoming active again. This position
is based on the current team formation, the role of the agent inside this formation and the position of
the ball on the field (see Section 9.2). For certain roles inside the formation we use heterogeneous player
types for which the characteristics are suitable to these roles (see Section 9.3). If an agent is in an active
situation he chooses an action based on his current position and on the position of other players on the
field. For reasons of simplicity the agents do not explicitly take the strength of the opponent team into
account when selecting an appropriate action.

Active as well as passive agents determine a new action in each cycle and do not commit to a previous
plan. This is because a soccer game provides a highly dynamic environment in which a premeditated
action sequence will have to be adapted significantly as soon as the opponents counteract it. We have
therefore chosen to base the action selection procedure (see Section 9.5) only on the current state of
the environment. Furthermore, the individual agent behaviors are coordinated implicitly via pre-defined
information which is known to all the teammates. In [90] this kind of information is referred to as the
locker-room agreement. There is no explicit coordination between the agents in the form of inter-agent
communication because the soccer server communication channel has a low bandwidth and is extremely
unreliable (see Section 3.2.2). It is therefore important that the agents do not depend on communication
when an action has to be performed. In our current implementation, the agents only use communication to
increase the amount of up-to-date information in their world model (see Section 9.4) and this significantly
improves their ability to cooperate with other teammates.

9.2 Formations and Strategic Positioning

Collaboration between agents can be achieved by making use of formations. A formation can be seen as
a specified arrangement of a group of agents which decomposes the task space by defining a set of roles.
Each role inside a formation can be filled by a single agent although the roles themselves are specified
independently from the agents that are to fill them. Formations are a principal concept for a soccer team
since they take care of a good distribution of players on the field. When a formation is used, the players
will be able to keep the most important parts of the field well covered during a match thereby avoiding a
clustering of team members in a certain area (e.g. around the ball as is usually the case in ‘kiddie soccer’
where no formations are used). In our implementation, formations deal with the positioning of agents
during passive situations, i.e. during situations in which an agent does not have an active role in the
game. Here we regard every situation in which an agent is not located close to the ball as passive. We
have largely based our positioning mechanism on a method called Situation Based Strategic Positioning
which has been introduced by FC Portugal [56, 77]. This means that formations define a set of roles
which consist of a player type (e.g. wing attacker) and a home position on the field. Inside the current
formation each agent is assigned a role which he must fulfill for as long as this formation is used. In
passive situations an agent determines a strategic position on the field by computing a weighted sum of
his home position and the current position of the ball which serves as an attraction point. It is important
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Figure 9.1: UML class diagram of the classes related to formations and positioning

to note that the attraction to the ball is different for each player type. The various home positions can
thus be seen to define the positioning pattern between the teammates, whereas the ball attraction defines
the way in which this pattern is stretched over the field in a given situation.

The implementation of our positioning mechanism consists of three separate classes which together contain
all the information for various types of formations. Figure 9.1 shows an UML class diagram of these classes
and their relations. For reasons of space and clarity the class methods have been omitted. The contents
of the three classes are explained in more detail below.

• Formations. This class contains a collection of FormationTypeInfo objects which hold all the nec-
essary information for the different types of formations. Furthermore, it stores the current team
formation and the agent’s number in this formation which determines his role. The method which
is used to determine a strategic position on the field is also contained in this class.

• FormationTypeInfo. This class contains all the information about one specific formation. It stores
the type of this formation as well as the agent’s home position in the formation and his player type
(e.g. wing defender, central midfielder, etc.). Furthermore, it contains a collection of PlayerTypeInfo
objects which hold all the necessary information for the different player types.

• PlayerTypeInfo. This class contains all the information about one specific player type. It stores this
type as well as a number of values which are used to determine a strategic position for such a player.
These are the following:

– The attraction to the ball in x-direction and y-direction. These are values from the interval
[0, 1] which determine the weight of the ball position when determining a strategic position.

– The minimum and maximum allowed x-coordinates of a strategic position for this player type.

– A boolean indicating whether a player of this type is allowed to move to a strategic position in
front of the ball. This is not allowed, for example, for a central defender (also called ‘sweeper’).

When an agent is initialized, the information for different types of formations is read from a configuration
file and stored in the appropriate class. Each agent reads the same file and therefore knows the roles and
player type information for all his teammates. As a result, each player can uniquely determine the strategic
position for his teammates given the current ball position. This type of pre-defined information that is used
by all the team members is an example of a locker-room agreement. It is used, for example, to determine
which player has to perform a free kick when one has been awarded. In our implementation this is not the
player which stands closest to the ball at present, but the player for whom the strategic position is closest
to the ball. In this way, the formation will stay more intact during a dead ball situation. Since each player
is able to determine the strategic position for all his teammates, he can thus determine which teammate
(including himself) should take the free kick without having to resort to unreliable communication. The
method which is used to compute the strategic position (sx, sy) for a player is shown in Algorithm 9.1.
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getStrategicPosition(~q) // ~q = current ball position

get home position (px, py) and ball attraction factors (attr x, attr y)
get x-coordinate range [min x,max x] and boolean BehindBall
(sx, sy) = (px, py) + (attr x, attr y) · (qx, qy)
if BehindBall == true and sx > qx then
sx = qx

end if
if sx > max x then
sx = max x

else if sx < min x then
sx = min x

end if
return (sx, sy)

Algorithm 9.1: Method for determining the strategic position (sx, sy) of a player.

It is important to realize that during a match various situations can occur in which the agent should not
move towards the strategic position as returned by the getStrategicPosition method. An example of
such a situation is when the returned position is offside. A player is in an offside position if he stands in
front of the ball on the opponent’s half of the field and closer to the opponent’s end line than all or all
but one1 of the opponent players when the ball is passed to him. To avoid being caught offside, a player
must always stay behind a so-called ‘offside line’ which is determined by the opponent player with the
second-highest x-coordinate or by the ball if the ball position is further forward than this player. If it turns
out that the returned strategic position lies past the offside line then the x-coordinate of this position is
adjusted accordingly (i.e. to an onside position). Another example of a situation in which the strategic
position returned in Algorithm 9.1 might be illegal is when the opponent team has been awarded a goal
kick2. In this case, it is not allowed to enter the opponent’s penalty area until the ball has left this area.
If an agent’s strategic position (sx, sy) is located inside this area the value for sx is therefore adjusted.

In our current implementation we only use two types of formations: an initial formation which is used
before the start of a half and after a goal has been scored and a 4-3-3 formation3 which is used during
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(a) Home positions in initial formation
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(b) Home positions in 4-3-3 formation

Figure 9.2: Home positions on the field in the two formations used by UvA Trilearn.

1This ‘one’ is usually the opponent goalkeeper.
2A goal kick is awarded to the defending team if the ball goes out of bounds over the end line and was last touched by the
attacking team. If the ball was last touched by the defending team then the attacking team is awarded a corner kick.

3Soccer formations are typically described as A-B-C where A, B and C are the numbers of defenders, midfielders and forwards
respectively. It is assumed that the 11th player is the goalkeeper. [54]



CHAPTER 9. TEAM STRATEGY 154

Number in Formation
1 2 3 4 5 6 7 8 9 10 11

home x −50.0 −13.0 −14.0 −14.0 −13.0 −5.0 0.0 0.0 15.0 18.0 18.0
home y 0.0 16.0 5.0 −5.0 −16.0 0.5 11.0 −11.0 −0.5 20.0 −20.0
pl type 1 3 2 2 3 4 5 5 7 6 6
attr x 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5
attr y 0.1 0.35 0.25 0.25 0.35 0.25 0.3 0.3 0.2 0.25 0.25
beh ball 1 0 1 1 0 0 0 0 0 0 0
min x −50.5 −45.0 −45.0 −45.0 −45.0 −30.0 −30.0 −30.0 −2.0 −2.0 −2.0
max x −30.0 35.0 0.0 0.0 35.0 42.0 42.0 42.0 40.0 42.0 42.0

Table 9.1: Complete specification of the 4-3-3 formation used by UvA Trilearn. The player type numbers
denote the following types: 1=goalkeeper, 2=central defender (sweeper), 3=wing defender, 4=central
midfielder, 5=wing midfielder, 6=wing attacker and 7=central attacker.

normal play. Figure 9.2 shows the home positions of the agents in these two formations. A complete
specification of the 4-3-3 formation, including ball attraction factors and x-coordinate ranges for each
player type, is given in Table 9.1. We have chosen to use this 4-3-3 formation as our standard formation
based on an analysis of logfiles from previous matches. This analysis showed that it was very difficult
to pass a good goalkeeper when the attack originated from the center of the field. The reason for this
was that the goalkeeper then stood in front of the center of his goal and was able to save most shots
on goal since he only had to travel a small distance before he could catch the ball. However, when the
attack originated from the wings the goalkeeper had to move to the side of the goal to cover the scoring
angle. A quick pass from the wing attacker to the central attacker then usually outplayed the goalkeeper
(who would have to travel a large distance to cover his goal again) and led to a good scoring opportunity.
Attacking from the wings thus proved to be effective and we therefore decided to use a 4-3-3 formation
which is the standard formation for using wing attackers [54]. Besides the initial formation shown in
Figure 9.2(a), we have chosen to specify only this 4-3-3 formation due to time constraints. In this way, we
were able to concentrate on this specific formation and make sure that the team as a whole played well in
it. This has led to good results in both defensive and offensive play as will be shown in Section 9.6.

9.3 Heterogeneous Player Selection

A group of agents is called homogeneous if the agents are physically and behaviorally identical and
heterogeneous if they are different in some way. The introduction of heterogeneous players was a new
feature in soccer server version 7. In earlier versions, all the players on the field were homogeneous and
the player parameters had the same values for each player. As of version 7 however, each team can choose
from several different player types which have different characteristics. These player types are randomly
generated when the server is started. The default player type is always the same, whereas the other types
are different on each server restart. The characteristics of these non-default players are based on certain
trade-offs with respect to the player parameter values used by the default player type. In the current
server implementation five trade-offs have been defined for specific combinations of player parameters.
These trade-offs are shown in Table 9.2. In each case one of the parameters in the combination gets an
improved value as compared to the default, whereas the other becomes worse. The actual values for these
player parameters are randomly chosen from different intervals which are defined in the server. For an
exact description of these value ranges and the mentioned trade-offs we refer the reader to Table 3.13.
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improvement weakness trade-off description

player speed max stamina inc max player is faster, but his stamina recovery is slower
player decay intertia moment player’s speed decays slower, but he can turn less

dash power rate player size player can accelerate faster, but he is smaller
kickable margin kick rand kickable distance is larger, but noise is added to kick
extra stamina effort min,effort max player has more stamina, but dash is less efficient

Table 9.2: Trade-offs between player parameters for heterogeneous players.

The coach of the team is responsible for selecting which player types to use and for substituting players
when necessary. When the server is started all 11 players are initialized to default players. The coach is
then allowed to change each player to a non-default player with the restriction that he is not permitted
to put more than three non-default players from the same type on the field simultaneously. Which player
types are selected should depend on the current strategy of the team. Within this strategy certain player
types will be more useful for a particular role than others. We have already seen in Section 9.2 that the
UvA Trilearn team always uses a 4-3-3 formation which is the standard for attacking along the wings.
In such a formation, the wing attackers must be able to move fast in order to cut through the enemy
defense and outrun the opponent defenders before passing the ball to a central attacker in front of the
goal. Furthermore, these players must be capable of sustaining a long sprint towards the opponent’s end
line without getting too tired. The policy which is used for heterogeneous player selection has been based
on these characteristics of the 4-3-3 formation. In order to determine which player types are best suited for
certain roles, we have developed a utility function which returns a numeric value for each type based on the
player parameters. This value represents a measure for the quality of a particular player type with respect
to a number of properties which are crucial for successfully filling these roles inside a 4-3-3 formation. For
each heterogeneous player type i, the utility function considers the following characteristics:

• The maximum speed mi for a player of type i. This value is represented by the player parameter
player speed max and denotes the maximum distance that a player can cover in one cycle (neglecting
noise and wind). If a player is capable of reaching a higher maximum speed he will thus be able to
move faster which is an important characteristic for a wing player in a 4-3-3 formation.

• The amount of stamina li that a player of type i loses in one cycle when he moves at maximum speed.
This value gives an indication of how long a player will be able to maintain his maximum speed
while running. Recall from Section 3.4.2 that the amount of stamina which is lost when a player
dashes depends on the power which has been supplied to the dash command: for a forward dash
the stamina loss equals this power, whereas it equals twice the absolute value of this power when
the player dashes backwards. Furthermore, a player’s stamina gets restored by stamina inc max in
each cycle until it has reached stamina max. The dash power di which is required for a player of
type i to maintain his maximum speed can be calculated according to the following formula4:

di =
player speed max · (1.0− player decay)

effort max · dash power rate · max power
· max power (9.1)

Here the numerator of the fraction denotes the amount of speed which is lost during a cycle as
a result of speed decay (assuming that the player is already moving at maximum speed) and the
denominator denotes the maximum amount of speed which can be added in one cycle when dashing
with maximum power. If we multiply the ratio between these values by the maximum power which
can be supplied to a dash command we get the dash power di which is required to compensate for

4Note that we have deliberately not eliminated the two occurrences of max power in this formula to keep the result intuitive.
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the lost speed. Note that if the numerator in the fraction is larger than the denominator (i.e. more
speed is lost during a cycle than can be gained by dashing) then it is not possible for the player
to reach the maximum speed since the dash power which is required to achieve this exceeds the
maximum. The value for di can be used to calculate the amount of stamina li that is effectively lost
during a cycle if maximum speed is to be maintained. This amount li equals the stamina which is
lost as a result of the dash minus the amount which is added in each cycle, i.e.

li = di − stamina inc max (9.2)

For each heterogeneous player type, the utility function combines the maximum speedmi with the stamina
loss li to obtain a utility value for this type. This is done by creating a simple ordering for both character-
istics: the maximum speeds for each player type are listed in ascending order, whereas the stamina losses
are listed in descending order. Note that the lists are thus ordered from worst to best, i.e. the higher the
index in the list the better. To each player type i we then assign two numbers, µi and λi, which denote
their index in the sorted lists for maximum speeds and stamina losses respectively. This gives:

µi = 1 +

n
∑

j=1

Θ(mi > mj) and λi = 1 +

n
∑

j=1

Θ(li < lj) (9.3)

where Θ(β) is a function that returns 1 when the boolean expression β is true and 0 otherwise. The
sum µi + λi represents a measure for how well a player is capable of moving at a high speed while not
consuming too much stamina in the process. The player type for which µi + λi has the highest value is
therefore assumed to be the most suitable for playing on the wings in a 4-3-3 formation. Note that it is
possible that the utility function returns the highest value for the default player type. In this case, all
the players in the team will remain default players. Otherwise, the default wing attackers are replaced
by the non-default player type with the highest utility value. The same is done for the central attacker
since this player must also be capable of running fast in order to keep up with the wing players during an
attack and to have a chance of receiving their cross pass. Furthermore, the wing defenders are changed to
the player type with the second-highest utility value if this value is higher than that for the default type.
This is done to create a better defense against a possible wing attack by the opponent team. Note that
we cannot use the best type for these players since we have already used this type for three players on the
field which is the maximum for a non-default type. The other players in the formation are kept unchanged
(i.e. default) due to the fact that the higher stamina loss for non-default types is a big disadvantage for a
midfielder or central defender. In our current implementation, the player types which are assigned to each
role stay the same throughout the match. The coach thus makes no substitutions during the game. The
reason for this is that the decision when to substitute a player requires some form of multi-agent modeling
by the coach which has currently not been implemented.

9.4 Communication Model

Agents in the soccer server are not allowed to communicate with each other directly, but only indirectly
through the use of server-defined say and hear protocols which restrict the communication. The soccer
server communication paradigm models a crowded, low-bandwidth environment in which the agents from
both teams use a single, unreliable communication channel [90]. Spoken messages have a limited length
(512 characters) and are only transmitted to players within a certain distance (50 meters) from the speaker.
No information is given about which player has sent the message or about the distance to the sender.
Furthermore, the aural sensor has a limited capacity. Each player can hear only one message from a
teammate every two simulation cycles and any extra messages that arrive during this time are discarded.
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One can thus never be sure that a spoken message will actually reach the intended receiver. Because
of this unreliability it is important that the agents do not depend on communication when they have to
perform an action. In our current implementation, the agents therefore only use communication to help
teammates improve their knowledge about the state of the world. Depending on the position of the ball,
the agent that has the best view of the field communicates his world model to all nearby teammates.
The teammates that hear this message can then use the communicated information about the parts of
the field which are currently not visible to them to elucidate some of their hidden state and increase the
reliability of their world model. As a result, the amount of up-to-date information in the world model
of the agents will increase significantly and this extra information can also be taken into account during
the action selection process. The extra information is not necessary however, since without it the agents
will also be able to maintain a reasonable approximation of the world state and determine an appropriate
action. This is important since it makes the agents robust to lost messages.

The UvA Trilearn communication model defines which player should speak in a given situation and how
frequently the broadcasting should take place. During the game, each player in the team determines
whether he is currently the best player to communicate his world model. This decision depends on the
position of the ball on the field as well as the role of the player inside the current team formation. Since
the main objective of our communication model is to increase the amount of up-to-date information in the
world model of the agents, it is important that the communicating player has a good view of the field and
sees a lot of teammates and opponents. Especially the part of the field where the ball (and thus the action)
is located should be clearly visible to this player. We empirically found that on average the midfielders at
the wings have the best view of the field since they are usually located around the center line and close
to the side where they can see most of the action when facing the ball. In our current implementation,
the wing midfielders are therefore the ones to communicate their world model. Note that, besides their
good view of the field, the central position of these players brings two additional advantages. Firstly, most
teammates will be located within the hearable distance of 50 meters from the speaker which means that
the team can take full advantage of the communication. Secondly, most objects in the speaker’s view cone
will on average be quite close to him which increases the precision of his visual information (see Section
3.2.1) and thus the reliability of the world model he communicates.

Algorithm 9.2 shows the method which is used by the agents to determine whether they should com-
municate their world model. If the ball is located on the right side of the field (positive y-coordinate)
the left midfielder is selected since he has a good view of a large playing area when he faces the ball.
Furthermore, this player currently does not have an active part in the game and this allows him to trade
off the frequency of visual information against the width of his view cone. Figure 9.3 shows the visible
area of a left midfielder when facing the ball on the right half of the field (bottom half of the picture) with
a view cone of 180 degrees. The wider view cone enables this player to see a larger part of the field and as

shallISaySomething()

if I haven’t spoken for two cycles then
// ~q = current ball position
if qy > 0 and my role == left midfielder then

communicate my worldmodel to teammates
else if qy ≤ 0 and my role == right midfielder then

communicate my worldmodel to teammates
end if

end if

Algorithm 9.2: Method for determining whether a player should communicate his world model.
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Figure 9.3: Visible area (shaded) of a left midfielder when he faces the ball on the right side of the field.
The player uses a wide view cone which enables him to see most of the playing area.

a result he can communicate more information to his teammates. He will receive visual information less
frequently however, but since his role in the game is currently a passive one this is acceptable. In the same
way, the midfielder on the right communicates his world model if the ball is located on the left side of the
field (negative y-coordinate). Note that the method presented in Algorithm 9.2 guarantees that only one
agent will communicate his world model every two cycles. As a result, we can be sure that every message
is received by all the players since there are no other messages to overload the communication channel.
The possibility that one of the wing midfielders might not be able to communicate for some reason is not
taken into account since this never occurs during regular matches.

9.5 Action Selection

In order to satisfy his goals, an autonomous agent must select at each moment in time the most appropriate
action among all possible actions that he can execute. This is what is known as the Action Selection
Problem (ASP). In the context of ASP, an Action Selection Mechanism (ASM) can be regarded as a
computational mechanism that must produce a selected action as output given various external and/or
internal stimuli as inputs. While the ASP refers to which action an agent must select in a given situation,
the ASM thus specifies how these actions are selected.

Since a soccer game provides a highly dynamic environment it is difficult to create a fixed attacking plan
or any other form of premeditated action sequence that works in every situation. As soon as the opponents
move to counteract the attack, for example, the plan must be adapted to the changed environment. Instead
of a sequence of actions, the UvA Trilearn agents therefore determine just a single action in each cycle and
base their action choice only on the current world state. In this section we will present our solution to the
ASP and describe the ASM which is used by our agents. Since it is impossible to create a complete action
selection strategy in one step, the development of the action selection procedure for the agents has been
an incremental process. The first iteration consisted of a simple decision procedure which was used to
test the low-level performance and basic agent skills. After testing the performance of the resulting team,
we gradually extended this version by introducing more advanced skills and creating a more sophisticated
strategy. The main advantages of this approach were that we had a working system at all times and that
we always knew that occurring problems had to originate from the last refinement step. Furthermore, the
effects of added functionalities could be tested by playing against previous versions of the team which did
not contain them. We will describe the action selection procedure for the UvA Trilearn team with the help
of several intermediate teams from which this team has evolved. Apart from the first team, each team that
is described in this section was either used to qualify for or participate in an international competition.
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9.5.1 First Version: De Meer 5

During the initial stages of the project we spent the majority of our time on solving low-level and
intermediate-level problems such as agent-environment synchronization and world modeling. In order
to create a ‘real’ team however, we needed some kind of high-level decision procedure. The first complete
version of our team that could actually play a game of soccer was ironically called De Meer 5.5 The idea
for this team was motivated by a simple team which had been released by the creators of RoboCup-2000
winner FC Portugal 2000. This basic team, which we will refer to as Simple Portugal, consisted of a simple
high-level decision procedure on top of the low-level implementation of 1999 world champion CMUnited-
99. It was claimed that this team would be able to beat many of the teams that had participated at
RoboCup-2000 and as such would provide a good starting point for new teams to practice against. De
Meer 5 consisted of a basic if-then-else action selection mechanism which was almost equal to the high-level
procedure used by Simple Portugal and which had been put on top of our own low-level implementation.
It was our intention to test the implementation of De Meer 5 by playing against Simple Portugal. Since
the high-level decision procedure for both teams was the same, it was clear that the lower levels would
make the difference. Playing against Simple Portugal would thus be a good test of the quality of our
low-level implementation, since it effectively meant comparing our lower levels to those of CMUnited-99.

Algorithm 9.3 shows the action selection procedure which is used by the agents of the De Meer 5 soccer
simulation team. If the confidence associated with the current ball position drops below a certain threshold,
a De Meer 5 agent searches for the ball. Otherwise, he determines whether he currently has an active part
in the game by checking if the ball is located within his kickable range or if he is the fastest teammate to
the ball. In the former case he kicks the ball with maximum power to a random corner in the opponent’s
goal regardless of his position on the field and in the latter case he will start to intercept. If the agent’s
role in the game is currently a passive one he moves to a strategic position which is based on the 4-3-3
formation described in Section 9.2 and when he is already close to this position he simply turns towards
the ball. Furthermore, we implemented a goalkeeper that uses a slightly different decision loop than the
regular field players. The strategic position for this goalkeeper is determined by defining a rectangle in
front of the goal and taking the first intersection point (i.e. closest to the ball) of this rectangle and the
line that runs from the ball to the center of the goal line. If the goalkeeper is the fastest player to the ball
and if the point of interception is located inside his own penalty area he tries to intercept the ball. Note
that the goalkeeper that we implemented exhibited similar behavior to the one used by Simple Portugal.
In this way, the difference between both teams would still be the low-level implementation only.

if confidence associated with current ball position is too low then
search ball

else if ball is kickable then
kick ball with maximum power to random corner in opponent goal

else if fastest teammate to ball is me then
intercept ball

else if distance to strategic position > 1 then
go to strategic position

else
turn towards ball

end if

Algorithm 9.3: Action selection procedure for soccer simulation team De Meer 5.

5The father of one of the authors actually plays in a team which has the same name. This name was chosen because the
team’s weekly performance failed to impress the corresponding author as did the performance of our first working version.
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Although the action selection procedure which is used by the De Meer 5 agents is very simple, it contains
the three most important skills for any soccer player: kicking, intercepting and positioning. We have
tested the implementation of De Meer 5 by playing against the Simple Portugal team. Initially, De Meer
5 performed very badly against this team. This was mainly because our intercept method was inferior
to that of our opponents. The Simple Portugal players always succeeded in intercepting the ball quickly,
whereas our players often failed to intercept correctly or did so at a suboptimal interception point. We
have therefore spent a long time on improving this particular skill (see Sections 7.3.4 and 7.4.1) and after
a while we were able to beat the Simple Portugal team by a combined score of 20-17 over 10 full-length
matches. At that point, it could thus be concluded that our overall low-level implementation was about
as good as that of CMUnited-99 and we decided to concentrate on the next version of our team.

9.5.2 UvA Trilearn Qualification Team for RoboCup-2001

To qualify for RoboCup-2001 we had to provide a logfile of a full-length game between UvA Trilearn and
FC Portugal 2000, the winning team at RoboCup-2000, and a 2-page research abstract describing the
research focus and scientific contributions of our team [20]. At this stage, De Meer 5 was clearly not
good enough to beat the previous champion and since we had little time to produce a winning logfile
we estimated that our best chance of qualifying would be to temporarily tune our high-level strategy
completely to playing well against FC Portugal. A quick visual analysis of this team revealed that their
wing attack was very strong and that they passed the ball very accurately. However, it seemed that their
attack through the center was not so effective and that defending was not their strongest point. In order
to play well against this team we thus had to be able to defend their wing attack and test their defense.

The action selection procedure for our qualification team is almost identical to that for De Meer 5 apart
from when the agent has control of the ball. In this situation, a De Meer 5 agent always kicks the ball
with maximum power to a random corner in the opponent’s goal regardless of his position on the field. It
was clear however, that in order to qualify our agents needed a more sophisticated strategy in which they
considered alternative options when the ball was kickable. A qualification agent therefore only shoots to
the goal if the distance is not too large and if the scoring angle is wide enough. Furthermore, he does not
kick the ball to a random corner in the goal but to the corner which provides him with the widest shooting
angle. However, if the distance to the goal is too large then the agent considers a different action. In the
first version of our qualification team the agent cleared the ball forward in this case by kicking it into the
widest angle between opponents in a forward direction. As a result, the team often succeeded in moving
the ball rapidly to the enemy half of the field. This had as a disadvantage however, that it usually led to
a loss of possession since the ball could be picked up by an enemy defender. We therefore extended this
version by enabling the agents to pass the ball to a free teammate if one was available. They preferred
this to clearing in order to try and keep their team in possession of the ball for a longer period of time.

A problem with this version of the team was that the players often passed the ball back and forth to
each other and consequently made no progress towards the opponent’s half of the field. As a result, the
FC Portugal defense was never tested. We therefore adapted the decision procedure by only allowing the
agents to pass to a free teammate in a forward direction. If such a teammate could not be found, the
agent’s action depended on his current position. If the agent was located on his own half he cleared the
ball forward. Since the ball then usually moved to the beginning of the enemy half, this often gave the
team a good starting point for setting up an attack. From there we implemented a simple wing attacking
pattern that was effective against the FC Portugal defense. The problem that the ball was often picked
up by an opponent when cleared further forward was solved by making a slight alteration to the clearing
action when the ball was cleared from the center. Instead of considering all forward directions, the agent
then cleared the ball into the widest angle between opponents towards the side of the field. Since it was
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much less crowded in this area, the opponents were usually not able to intercept the ball quickly there.
We thus had to make sure that one of our players could reach it first. To this end, we defined a slightly
more aggressive formation by making small changes to the ball attraction factors which were used for De
Meer 5. As a result, our players were attracted more towards the ball which enabled a wing attacker to
intercept it before an opponent did. This player would then dribble with the ball along the wing towards
the side of the opponent’s penalty area where he gave a cross pass to the central attacker. When the
central attacker was able to get to the ball he usually had a good chance to score since the wing player
had drawn the goalkeeper towards the side. Note that in addition to this attack we also implemented a
simple marking scheme to reduce the effectiveness of the FC Portugal wing attack. This marking scheme
was much improved in future versions however, and will be discussed in more detail in Section 9.5.3.

The complete action selection procedure for when a qualification agent has control of the ball is shown in
Algorithm 9.4. Note that we have omitted the action selection for special play modes such as kick in or
free kick and only show the procedure for play on mode. During other play modes one of the agents
generally moves to a position directly behind the ball (i.e. facing the opponent’s goal) after which he selects
an action according to the same procedure that he uses in play on situations. We tested our qualification
team by repeatedly playing against FC Portugal 2000 and tuned it to play well against this opponent.
Although we lost more than we won against this team, we were able to beat them on several occasions. Our
best result was a 4-2 victory and using the logfile for this game we qualified for RoboCup-2001. It must
be noted however, that the decision procedure described in this section was designed solely for playing
well against FC Portugal 2000 and represented a temporary solution in order to meet the RoboCup-2001
qualification requirements. As a result, our qualification team lacked a lot of flexibility.

if distance to goal is not too large and scoring angle is wide enough then
kick ball with maximum power to most open corner in opponent goal

else if there is a free teammate in front of me then
pass ball to most free teammate in forward direction

else if my position is located on own half then
clear ball forward into widest angle between opponents

else if my position is located to the side of the opponent’s penalty area then
if there is a free teammate inside the opponent’s penalty area then

pass ball to most free teammate inside the opponent’s penalty area
else

give ‘cross pass’ to point just in front of the opponent’s penalty area
end if

else if my position is located on the wing of the opponent’s half and no opponents are close then
dribble with ball along the wing towards the side of the opponent’s penalty area

else
clear ball forward into widest angle between opponents towards the side of the field

end if

Algorithm 9.4: Action selection for UvA Trilearn qualification team when an agent can kick the ball.

9.5.3 UvA Trilearn Team for German Open 2001

After the RoboCup-2001 qualification deadline had expired, we designed a new setup for the action
selection procedure using the knowledge gathered from previous versions. The resulting team was used
during the German Open 2001 in Paderborn (Germany). We had explicitly divided the action selection
process into two distinct parts: one in which the agent determines his action mode depending on the current
state of the environment (coarse action selection) and one in which the agent generates an appropriate
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determineActionMode()

if confidence associated with current ball position is too low then
return ACT SEARCH BALL

else if ball is kickable then
return ACT KICK BALL

else if fastest teammate to ball is me then
return ACT INTERCEPT

else if shouldIMark() == true then
return ACT MARK

else if distance to strategic position > 1 then
return ACT GOTO STRATEGIC POSITION

else
return ACT WATCH BALL

end if

Algorithm 9.5: Method used byGerman Open agents to determine their action mode in a given situation.

action command based on his action mode for the current situation (refined action selection). Algorithm
9.5 shows the method which is used by our German Open agents for determining their action mode. This
method can be seen to form the basis of the action selection process. Note that this basis is only slightly
different from the decision procedure used by De Meer 5 (see Algorithm 9.3). The main difference between
these two teams is not the nature of the action selection policy however, but the way in which this policy
is refined to generate a specific action command. Whereas a De Meer 5 agent only considers a small
number of actions in each situation, a German Open agent has many more options from which to choose
(especially when he has control of the ball). As a result, the German Open agent is more flexible.

In our German Open team almost all action modes can be chosen based on information which is directly
stored in the world model of the agent. The only exception is the decision whether to mark an oppo-
nent. This decision is based on a mapping from teammates to opponents which is constructed using
the shouldIMark method. This method creates a list containing all the opponents that are located in
the agent’s defensive quarter of the field (i.e. for which the x-coordinate of their position is smaller than
−pitch length/4) and assigns a priority factor to each of these opponents which represents the impor-
tance of marking him. This priority factor depends on the distance from the opponent to the penalty spot
and on whether the opponent is currently located on the same side of the field as the ball. The priority
factor fi which is assigned to an opponent i is calculated according to the following formula:

fi =
(1 + 2 ·Θ(sign(pty) = sign(qty)))

‖(PENALTY SPOT X, 0)− ~pt‖
(9.4)

where ~pt and ~qt respectively denote the current positions of the opponent and the ball and where Θ(β) is
a function that returns 1 when the boolean expression β is true and 0 otherwise. An opponent will thus
be assigned a higher priority factor if he is located close to the penalty spot and on the same side of the
field as the ball. The list of opponents is then sorted based on this factor and for each opponent in the list
it is determined which teammate should be his marker. The highest-priority opponent is assigned to the
teammate which is closest to him, the second-highest priority opponent to the closest of the remaining
teammates, etc. The resulting mapping can be used by the agent to determine whether he should mark an
opponent, and if so, which opponent he should mark. Note that if an opponent has indeed been assigned to
the agent (i.e. the method returns true) then the player variable OpponentToMark is set to this opponent.

After determining their action mode for the current situation, the agents use the generateAction method
to generate an appropriate action command for this mode. This method is shown in Algorithm 9.6. In
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generateAction()

mode = determineActionMode()
if mode == ACT SEARCH BALL then

action = searchBall()
else if mode == ACT KICK BALL then

action = determineActionWithBall()
else if mode == ACT INTERCEPT then

action = intercept()
else if mode == ACT MARK then

action = markOpponent(OpponentToMark, MarkDistance, MARK BALL)
else if mode == ACT GOTO STRATEGIC POSITION then

action = moveToPos(getStrategicPosition(), PlayerWhenToTurnAngle, PlayerDistanceBack)
else if mode == ACT WATCH BALL then

action = turnBodyToObject(OBJECT BALL)
end if
action = adjustDashPowerForStamina(action, mode)
send action command to ActHandler

Algorithm 9.6: Method used by German Open agents to generate an action command

most cases the mapping from action mode to action command is straightforward and amounts to the
direct application of one of the player skills which have been described in Chapter 7. The only exception
is the action choice when the ball is kickable. This is more complicated since an active agent needs to
take various aspects of the current situation into account to determine the best action for the team. In
general, the behavior of an agent with the ball should depend on the position of the ball on the field. We
have therefore divided the field into different areas (see Figure 9.4) and made the action choice dependent
on the area in which the ball is currently located. If an agent has the ball on his own half, for example,
he considers different actions than if he is close to the opponent’s goal. Algorithm 9.7 shows the decision
procedure which is used by the agents of our German Open team when they have control of the ball. This
procedure contains a different action selection policy for each of the specified areas and is an extension
of Algorithm 9.4. As in our qualification team, the main idea is to get the ball away from the defensive
area and clear it to one of the sectors on the side of the field. A wing attacker then moves with the ball
towards the side of the opponent’s penalty area and gives a cross pass to a free teammate in front of the
goal. Here a teammate is labeled as ‘free’ if there are no opponents inside a cone with this teammate as
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Figure 9.4: Areas on the field which are used for action selection when the ball is kickable.
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determineActionWithBall()

if distance to ball is not too large and scoring angle is wide enough then
kick ball with maximum power to most open corner in opponent’s goal

else if ball is located in area 1 then
// consider actions in following order (conditions between brackets):
turn with ball towards opponent’s goal (if facing own goal and no opponents are close)
pass ball at normal speed to most free teammate in forward direction (only if very free)
dribble slowly forward in direction of widest angle between opponents (if angle is wide enough)
clear ball forward into widest angle between opponents (no condition)

else if ball is located in area 2 then
// consider actions in following order (conditions between brackets):
clear ball forward to left or right wing depending on widest clearing angle (if angle is wide enough)
pass ball at normal speed to most free teammate in forward direction (only if very free)
turn with ball towards opponent’s goal (if facing own goal and no opponents are close)
dribble slowly towards opponent’s goal (if no opponents are blocking the desired path)
clear ball forward into widest angle between opponents (no condition)

else if ball is located in area 3 (i.e. 3a or 3b) then
// consider actions in following order (conditions between brackets):
clear ball forward to my side of the field (if teammate − mostly me − can reach ball fastest)
pass ball at normal speed to most free teammate in forward direction (only if very free)
pass ball at high speed to most free teammate in forward direction (only if fairly free)
dribble slowly forward in direction of widest angle between opponents (if angle is wide enough)
kick ball with maximum power to front edge of opponent’s penalty area (no condition)

else if ball is located in area 4 (i.e. 4a or 4b) then
// consider actions in following order (conditions between brackets):
dribble fast towards side of opponent’s penalty area (if outside penalty area and path not blocked)
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
dribble slowly forward in direction of widest angle between opponents (if angle is wide enough)
kick ball with maximum power to front edge of opponent’s penalty area (no condition)

else if ball is located in area 5 (i.e. 5a or 5b) then
// consider actions in following order (conditions between brackets):
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
dribble slowly to side of opponent’s penalty area (if outside penalty area and path not blocked)
kick ball with maximum power to front edge of opponent’s penalty area (no condition)

else if ball is located in area 6 then
// consider actions in following order (conditions between brackets):
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
kick ball with maximum power to most open corner in opponent’s goal (no condition)

end if

Algorithm 9.7: Action selection for UvA Trilearn German Open team when an agent can kick the ball.
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its base and the ball as its end point. Note that the width of the cone represents a measure of the degree
of ‘freeness’ and is an indication of the required end speed of the pass. If for some reason the desired
action cannot be executed (e.g. due to the presence of opponents) several alternatives are considered to
make the overall team strategy more flexible. If the desired ball trajectory is blocked by an opponent,
for example, the agent might try to dribble with the ball in a different direction even when this means
that he must temporarily deviate from the standard attacking pattern. Other options might be to pass
the ball to a free teammate if is one is available or to clear the ball forward into the widest angle between
opponents. It must be noted however, that despite these alternatives our German Open team still lacked
the necessary flexibility to play well against different types of opponents.

Algorithm 9.6 shows that the action command which is generated by the agent is passed to a stamina man-
agement method called adjustDashPowerForStamina. When necessary, this method adapts the command
parameters based on the agent’s current stamina. Note that this is only relevant if a dash command has
been generated since stamina is only consumed when the agent dashes. The idea is to determine whether
the current situation allows the agent to save his stamina in case it is low. If the agent is currently
intercepting the ball or marking an opponent it will be more important for him to keep dashing than if he
is moving towards his strategic position. When marking or intercepting, the dash power is therefore only
adjusted if the amount of stamina which is lost as a result of the dash causes the agent’s stamina to drop
below the recovery decrement threshold (see Section 3.4.2). This is an undesirable situation since it will
lead to a permanent decrease of the agent’s recovery value and subsequently to a slower recovery of his
stamina during the remainder of the game. To avoid this, the dash power is thus adjusted in such a way
that the agent’s stamina stays above the threshold. If the agent currently does not have an active part in
the game (e.g. because he is located at a large distance to the ball) it is less important for him to keep
dashing and this gives him an opportunity to save some stamina. In these cases, we therefore adjust the
dash power depending on the difference with the recovery decrement threshold in order to try and keep
the agent’s stamina well above this threshold. As a result, the agent will have enough stamina to act once
he becomes active again. The stamina management procedure is shown in more detail in Algorithm 9.8.

adjustDashPowerForStamina(action, mode)

if type(action) 6= dash then
return action // only dashing consumes stamina

end if
// backward dash (i.e. dash power < 0) consumes twice as much stamina
sta loss = ((action→power > 0) ? 1 : -2) · action→power − stamina inc max

diff thr = CurrentAgentStamina − recover dec thr · stamina max

if mode == ACT INTERCEPT or mode == ACT MARK then
if diff thr < sta loss then

action→power = ((action→power > 0) ? 1 : -0.5) · (diff thr + stamina inc max)
end if

else
if diff thr < 0.1 · stamina max then

action→power = 0 // save stamina
else if diff thr < 0.25 · stamina max and distance to ball > 30 then

action→power = (action→power)/4 // consume less stamina by dashing more slowly
end if

end if
return action

Algorithm 9.8: Method for adjusting the power of a dash if an agent’s stamina is low.
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9.5.4 UvA Trilearn Team for RoboCup-2001

The UvA Trilearn team that participated at the RoboCup-2001 robotic soccer world championship in
Seattle (USA) was an extension of our German Open team which has been described in Section 9.5.3. In
comparison to this team the most important features that were added are the following:

• Heterogeneous players. Team roles are filled by different types of players with different character-
istics. Wing attackers, for example, are faster which greatly enhances the effectiveness of the UvA
Trilearn wing attack. Issues related to heterogeneous player selection were described in Section 9.3.

• Inter-agent communication. The agents use this to increase the reliability of their world state
representation. As a result, their ability to cooperate with teammates or mark opponent attackers
improves significantly. The UvA Trilearn communication model has been described in Section 9.4.

• A scoring policy. This policy enables the agents to determine the best target point in the goal,
together with the associated probability of scoring when the ball is shot to this point in a given
situation. The underlying statistical framework for this policy was presented in Chapter 8.

• A more refined action selection procedure for when an agent has control of the ball.

• A new goalkeeper that defends his goal line in a more efficient way.

At the German Open, our high-level team strategy was too rigid to play well against different types of
opponents. Especially defensive opponents proved difficult to beat for us since our agents did not have
enough action alternatives during an attack. We therefore extended the action selection strategy when
the ball is kickable to increase the flexibility of the team. The general setup for the resulting decision
procedure is the same as for the German Open agent: the agent first determines his current action mode
and subsequently generates an action. If the agent has control of the ball this action depends on the area
in which the ball is located (see Figure 9.4). The main difference with respect to the German Open agent
is that the UvA Trilearn RoboCup agent can perform several additional high-level skills such as through
passing and outplaying an opponent. When the ball is kickable, he uses a priority-based action selection
method which is an extension of Algorithm 9.7. Depending on the area in which the ball is located the
agent considers various action alternatives which have different priorities (represented by the order in
which they are considered). In a given situation he then selects the highest-priority alternative for which
the predicted success rate exceeds a certain threshold. Note that we have ordered the alternatives for each
area based on our own soccer knowledge and on information contained in soccer literature [14, 38, 54].
In general, the safest and most effective options are tried first and if the predicted success rate for these
options is too low then the more risky actions are considered. The exact decision procedure which is used
when an agent can kick the ball is shown in Algorithm 9.9. Although with this procedure the agents
still have a preference for the standard wing attacking pattern described in Section 9.5.3, their behavior
is much more flexible now since they can easily deviate from this pattern and find an alternative way of
scoring. As a result, the team is able to perform well against offensive as well as defensive opponents.

For our UvA Trilearn RoboCup team we also implemented a new goalkeeper for which the action selection
procedure is completely different to that of our old goalie (originating from De Meer 5). Instead of moving
on a rectangle in front of the goal, the new goalkeeper moves on a line parallel to the goal line at a small
distance from the goal. Depending on the position of the ball he picks the optimal guard point on this line
as his strategic position. For a detailed explanation of how this optimal guard point is computed we refer
the reader to Section 7.4.9. The main feature of our new goalkeeper is that his movement is efficient due
to the fact that he keeps the direction of his body aligned with the direction of the line along which he
moves. As a result, he is able to move to any point on this line without having to waste cycles on turning
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determineActionWithBall()

if scoring probability for best scoring point > ScoringProbThr (=0.9) then
kick ball with maximum power to best scoring point as returned by scoring policy

else if ball is located in area 1 then
. . . same procedure as for German Open agent; see Algorithm 9.7

else if ball is located in area 2 then
// consider actions in following order (simplified conditions between brackets):
turn with ball towards opponent’s goal (if facing own goal and no opponents are close)
dribble fast towards opponent’s goal (if no opponents are blocking the desired path)
pass ball at normal speed to most free teammate in forward direction (only if very free)
pass ball at high speed to most free teammate in forward direction (only if fairly free)
give through pass to teammate at the side of the field (if angle between opponents is wide enough)
clear ball forward into widest angle between opponents (no condition)

else if ball is located in area 3 (i.e. 3a or 3b) then
// consider actions in following order (simplified conditions between brackets):
turn with ball towards opponent’s goal (if facing own goal and no opponents are close)
outplay opponent (if opponent is very close)
dribble fast towards side of opponent’s penalty area (if no opponents are blocking the desired path)
clear ball forward to my side of the field (if teammate − mostly me − can reach ball fastest)
pass ball at normal speed to most free teammate in forward direction (only if very free)
dribble slowly forward in direction of widest angle between opponents (if angle is wide enough)
clear ball forward into widest angle between opponents (no condition)

else if ball is located in area 4 (i.e. 4a or 4b) then
// consider actions in following order (simplified conditions between brackets):
dribble fast towards side of opponent’s penalty area (if outside penalty area and path not blocked)
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
give through pass to teammate in area 6 (if angle between opponents is wide enough)
outplay opponent (if opponent is very close)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
clear ball towards penalty area into widest angle between opponents (no condition)

else if ball is located in area 5 (i.e. 5a or 5b) then
// consider actions in following order (simplified conditions between brackets):
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
dribble slowly towards side of opponent’s penalty area (if outside penalty area and path not blocked)
outplay opponent (if opponent is very close)
give through pass to teammate in area 6 (if angle between opponents is wide enough)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
clear ball towards penalty area into widest angle between opponents (no condition)

else if ball is located in area 6 then
// consider actions in following order (simplified conditions between brackets):
dribble fast towards opponent’s goal (if no opponents are blocking the desired path)
dribble slowly forward in direction of widest angle between opponents (if angle is wide enough)
pass ball at normal speed to most free teammate in areas 4, 5 or 6 (only if very free)
give through pass to teammate in area 6 (if angle between opponents is wide enough)
pass ball at high speed to most free teammate in areas 4, 5 or 6 (only if fairly free)
kick ball with maximum power to best scoring point as returned by scoring policy (no condition)

end if

Algorithm 9.9: Action selection for the UvA Trilearn RoboCup team when an agent can kick the ball.
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his body. Throughout the match, the goalkeeper will stay on his line for as long as possible. When he is in
a passive situation (i.e. the ball is far away or not heading towards the goal) he uses the defendGoalLine
skill to move to the optimal guard point on the line. Furthermore, he will even stay on his line when the
ball is heading for the goal and will enter the goal in less than 20 cycles. In this case, he moves to the
intersection point of the ball trajectory with the line in an attempt to block the path to the goal and catch
the ball once it comes within his catchable distance. In general, it will take the goalkeeper fewer cycles
to catch the ball in this manner (i.e. without having to turn) than if he would use the intercept skill.
The only situation in which the goalkeeper leaves his line is when he is clearly the fastest player to the
ball and when the point of interception is inside his own penalty area. The complete decision procedure
for the UvA Trilearn goalkeeper is shown in Algorithm 9.10.

if confidence associated with current ball position is too low then
return searchBall()

else if ball is catchable then
return catchBall()

else if fastest player to ball is clearly me and interception point lies inside penalty area then
return intercept()

else if ball is heading towards goal and will enter goal in < 20 cycles then
// ~z = desired guard point, θt + φt = agent’s global body angle in cycle t
~z = intersection(ball trajectory, goalie line)
return moveToPosAlongLine(~z, θt + φt, GoalieDevDist, 1, GoalieTurnThr, GoalieCorrAng)

else
return defendGoalLine(DefendGoalLineDist)

end if

Algorithm 9.10: Action selection procedure used by the UvA Trilearn goalkeeper.

9.6 Results

Although the features that have been described in this section have all been merged into a single robotic
soccer system, we can isolate the effects of each of them through controlled testing. A proper way to
establish the effectiveness of a technique x that is a single aspect of a team is to let this team play games
against itself in which one side uses technique x and the other side does not. In this section we present
empirical results that demonstrate the effectiveness of our use of heterogeneous players, our communication
model and our new goalkeeper. Although a full-length game in the soccer server lasts for 6,000 cycles (10
minutes), the game scores generally vary greatly due to the large amount of noise which is incorporated
into the simulation. The reported results are therefore based on several games. Compiled statistics include
the number of games won, drawn and lost by a team, the average number of goals scored by a team and
the standard deviation from this average. Finally, Section 9.6.4 presents results of games between the
teams described in Sections 9.5.1−9.5.4 and the top three teams at RoboCup-2000. These results are
meant to give a rough estimate of the overall strength of UvA Trilearn and its intermediate versions. All
the tests described in this section have been performed using three Pentium III 1GHz/256MB machines
(one for the server and one for each team) running Red Hat Linux 7.1.

9.6.1 Heterogeneous Player Results

As described in Section 9.3, the UvA Trilearn team uses faster players at the wings of the formation
to enhance the effectiveness of their wing attack. We have tested the benefit this approach by playing
matches between our standard UvA Trilearn team (that uses heterogeneous players) and a homogeneous
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UvA Trilearn team that uses only default players. The behavior of the players on both teams was otherwise
identical. Table 9.3 shows the results over the course of 10 full-length games. Here it must be noted that
the outcome of a match cannot be regarded as a measure for the actual performance of a heterogeneous
player. However, it does give a good indication of the overall effect of using them. The results clearly speak
in favor of the heterogeneous team which did not lose a single game and did not concede a single goal. This
superiority was also visible during the games. The heterogeneous players were able to move faster when
they intercepted the ball and easily outran their opponents on an attack6. The homogeneous team, on the
other hand, hardly ever managed to create a scoring opportunity due to their lack of speed which gave the
heterogeneous team enough time to reorganize their defense (which also contained faster players on the
wings). As a result, the wing attack of the homogeneous team was less effective. To test the statistical
significance of the results we also played the heterogeneous team against itself and the homogeneous team
against itself. Over the course of 10 games, the heterogeneous team scored an average of 1.4 goals with
a standard deviation of 1.3 and the homogeneous team scored an average of 0.3 goals with a standard
deviation of 0.48. These outcomes confirmed our earlier observations: the heterogeneous team manages to
score about 1.4 goals per game against the UvA Trilearn goalkeeper, whereas the homogeneous team fails
to score often due to their lack of speed on the wings which reduces the effectiveness of the team strategy.

Wins Draws Losses Av. score St. dev.

Heterogeneous players 7 3 0 1.4 1.67
Homogeneous players 0 3 7 0.0 0.00

Table 9.3: Results of 10 games between a homogeneous and a heterogeneous UvA Trilearn team.

9.6.2 Communication Results

The UvA Trilearn agents use communication to increase the reliability of their world model (see Section
9.4). Depending on the position of the ball the agent that has the best view of the field (either the left
or right midfielder in our implementation) communicates his world model to all nearby teammates. We
have tested the effect of our communication model on the overall team performance by playing matches
between our standard UvA Trilearn team (that makes use of communication) and an adapted version of
this team that uses no communication. Besides the ability to communicate, the behavior of the players
on both teams was identical. Table 9.4 shows the results over the course of 10 full-length games. These
results clearly show that communication has a positive effect on the performance of the team. The team
that makes use of communication wins almost every game and concedes only three goals in 10 matches.
Furthermore, the world model of the communicating agents contains up-to-date information about a larger
number of players on the field. On average, the communicating agents ‘see’ about 17 players in each cycle,
whereas this number is only about 13 for the non-communicating agents. Despite the fact that each agent
only has a limited view cone from which he receives visual information, the communicating agents thus
still have a good global representation of the environment. As a result, the communicating agents have
more up-to-date player information to consider during the action selection process and this increases their
ability to cooperate with other teammates. To test the statistical significance of the results, we again

Wins Draws Losses Av. score St. dev. Players seen St. dev.

Communication 8 2 0 1.8 1.13 16.793 0.252
No communic. 0 2 8 0.3 0.48 12.807 0.180

Table 9.4: Results of 10 games between UvA Trilearn with and without communication.

6Despite this, the number of goals scored was rather low. This was mainly due to the goalkeeper that made a lot of saves.
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played the non-communicating team against itself. Over the course of 10 games, this team scored an
average number of 0.6 goals with a standard deviation of 0.84. The results of the standard team (which
uses communication) against itself were already given in Section 9.6.1: over 10 games they scored an
average of 1.4 goals with a standard deviation of 1.3. When compared to Table 9.4, these results are
as can be expected: the communicating team scores slightly less often against itself (better opponent),
whereas the non-communicating team scores slightly more often (worse opponent).

9.6.3 Goalkeeper Results

To test whether our new goalkeeper (which moves on a line; see Section 9.5.4) is an improvement over
the old one (which moves on a rectangle; see Section 9.5.1) we played 10 full-length games between UvA
Trilearn with the old goalkeeper and UvA Trilearn with the new goalkeeper. Besides the goalkeeper both
teams were identical. Table 9.5 shows the results. These results clearly show that the introduction of the
new goalkeeper had a positive effect: the team that uses the new goalkeeper wins all of its games and
concedes only very few goals. When we played the team with the old goalkeeper against itself, an average
number of 4.2 goals were scored by each team (over the course of 10 games) with a standard deviation of
1.69. This shows that in general it is much easier to pass the old goalkeeper than the new one.

Wins Draws Losses Av. Score St. Dev.

New goalkeeper 10 0 0 4.8 1.81
Old goalkeeper 0 0 10 1.0 0.67

Table 9.5: Results of 10 games between UvA Trilearn with the old and the new goalkeeper.

9.6.4 Overall Team Results

To get an indication of the performance of the UvA Trilearn team and its intermediate versions relative to
the best teams from the previous year, we played a trial competition that contained the teams described
in Sections 9.5.1−9.5.4 and the top three teams at RoboCup-2000. In this competition all the teams
played 10 games against each other. The results are summarized in Tables 9.6 and 9.7. Table 9.6 gives
an indication of the overall strength of the teams relative to each other. It contains a matrix of all the
matches that were played and shows the number games won, drawn and lost by a team against each of
the other teams. The last column denotes the number of points that were gathered by each team in all
its matches according to the standard soccer rules: three points for a win and one for a draw. This points
measure can be seen to create an ordering between the teams indicating their strength in the competition.
Table 9.7 shows the cumulative score over the course of 10 games between each of the teams. This gives
an indication of which teams are able to score easily or concede fewer goals against specific other teams.

Before we explain the results several remarks are in order. First of all, the matches were played using
soccer server version 7.10 while the RoboCup-2000 teams were originally built for version 6.xx. The main
differences between versions 6 and 7 of the server are (1) in version 7 the ball can be accelerated more with
a single kick, and (2) in version 7 the stamina of the players increases more in each cycle. Although the
players of each team were aware of the changed settings (which are read from a configuration file before
the start of a match), it was clear that the RoboCup-2000 teams did not adapt their strategy accordingly.
The FC Portugal 2000 team, for example, is normally highly configurable and uses a different strategy for
different types of opponents by changing the team’s configuration. This is done manually before the game
and automatically during the game when the situation asks for it. However, the publicly released FC
Portugal 2000 binary that was used in our experiments was created specifically to play well with a lower
stamina increase per cycle. As a result, the team was not as aggressive as they could have been with the new
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Team 1 2 3 4 5 6 7 Points

1. De Meer 5 - 6-2-2 2-2-6 0-0-10 1-2-7 0-0-10 3-4-3 46
2. Trilearn Qualification 2-2-6 - 0-2-8 0-0-10 4-0-6 1-2-7 4-4-2 43
3. Trilearn German Open 6-2-2 8-2-0 - 0-0-10 4-0-6 2-0-8 5-4-1 83
4. Trilearn RoboCup 10-0-0 10-0-0 10-0-0 - 10-0-0 10-0-0 10-0-0 180
5. FC Portugal 2000 7-2-1 6-0-4 8-0-2 0-0-10 - 6-3-1 10-0-0 116
6. Brainstormers 2000 10-0-0 7-2-1 8-0-2 0-0-10 1-3-6 - 10-0-0 113
7. ATT-CMU 2000 3-4-3 2-4-4 1-4-5 0-0-10 0-0-10 0-0-10 - 30

Table 9.6: Results of matches played between four versions of the UvA Trilearn team and the top three
teams at RoboCup-2000. Each entry shows the number of games won, drawn and lost by a team against a
specific opponent. The right-most column denotes the number of points that a team has gathered (three
for a win and one for a draw) and can be used to create an ordering of the teams indicating their strength.

Team 1 2 3 4 5 6 7 Total

1. De Meer 5 - 22-6 5-9 0-96 5-21 0-15 4-7 36-154
2. Trilearn Qualification 6-22 - 10-25 0-110 20-28 3-12 10-6 49-203
3. Trilearn German Open 9-5 25-10 - 0-107 44-40 4-19 11-7 93-188
4. Trilearn RoboCup 96-0 110-0 107-0 - 180-0 34-0 78-0 605-0
5. FC Portugal 2000 21-5 28-20 40-44 0-180 - 11-6 41-3 141-258
6. Brainstormers 2000 15-0 12-3 19-4 0-34 6-11 - 44-0 96-52
7. ATT-CMU 2000 7-4 6-10 7-11 0-78 3-41 0-44 - 23-188

Table 9.7: Cumulative scores of matches between four versions of UvA Trilearn and the top three teams
at RoboCup-2000. Each entry denotes the number of goals scored for and against a team when playing a
specific opponent over the course of 10 games. The right-most column shows the total score for the teams.

server settings. Our results against this team are therefore slightly flattered. Furthermore, the complexity
of the simulation causes the result of a game to be influenced by many different factors. Consequently,
there is a potential danger of drawing invalid conclusions from results such as those presented in Tables
9.6 and 9.7. Some examples are the following:

• It is invalid to conclude that if team A beats team B then all of the techniques used by team A are
more successful than those used by team B. Unless both teams are identical except in one respect,
no individual aspect of either team can conclusively be credited with or blamed for the result.

• The final score of a game is no measure for the abilities of the teams that played in it. It cannot
be derived from the result, for example, which team used the best positioning method, which team
had the best goalkeeper, which team possessed the best individual skills, etc. The result of a game
only gives an indication of the combined effect of all the team’s characteristics and as such it can
generally be seen as a test of the overall team strength and not of the individual components.

• Game results are not ‘transitive’. It cannot be concluded that if team A beats team B and team B
beats team C then team A will beat team C. This is because different teams use different strategies
which might be more successful against certain opponents and less successful against others. The
UvA Trilearn qualification team, for example, is tuned to play well against FC Portugal 2000 and is
able to beat this team on several occassions. However, FC Portugal 2000 wins most of its matches
against Brainstormers 2000, whereas our qualification team nearly always loses against them.
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• The goal difference during a game is no measure for how much better the winning team has performed
overall as compared to the losing team. The score can be flattered due to the fact that the losing
team unsuccessfully changed its strategy during the match in an attempt to force a positive result.
The FC Portugal 2000 team, for example, changes their formation and starts to play very offensively
if they are trailing by two or more goals. However, in most cases the result is counterproductive to
the intention since their defense will become weaker which makes it easier for the opponents to score
more often. As a result, the team is usually beaten heavily once the opponents lead by two goals.

When we look at the results of the top three teams at RoboCup-2000, it is clear that FC Portugal is an
offensive team: they manage to score a lot but also concede quite a large number of goals7. Brainstormers,
on the other hand, are a defensive team: they conceded very few goals but were not able to score a lot
either. Finally, ATT-CMU was not able to score often and also conceded many goals. The results of the
incremental versions of UvA Trilearn show that in general each version was a clear improvement over the
previous one. The only exception was the UvA Trilearn qualification team that overall gathered fewer
points than De Meer 5. However, the purpose of our qualification team was to play well against FC
Portugal 2000 in order to qualify for RoboCup-2001 and the results clearly show that our qualification
team performs better against FC Portugal 2000 than De Meer 5 does. The high-level strategy of De Meer
5 was too simple to score many goals against any opponent. However, they also conceded relatively few
goals due to the fact that they always kicked the ball to the opponent’s half of the field which made it
difficult for the opponent team to set up an attack. The qualification team was able to score more goals
since the agents were now able to pass the ball around. As a result, they could keep the attack going.
This had as a disadvantage however, that the ball was lost on the defensive half more often (when the
opponents intercepted a pass) than would happen to De Meer 5 and this explains the higher amount of
goals conceded. The UvA Trilearn German Open team is a clear improvement over the earlier versions
and performs reasonably well against most teams. Brainstormers proved to be the most difficult opponent
for this team due to their tight defense which made it difficult to score. Despite this, our German Open
team succeeded in beating them on two occasions. Finally, our UvA Trilearn RoboCup team clearly
outperformed every other team that they played against. This team won all its matches and was able to
score 605 goals in 60 games without conceding a single goal. As compared to the German Open team, our
RoboCup team was much more flexible and could play well against offensive opponents (FC Portugal) as
well as defensive opponents (Brainstormers). Although the tight Brainstormers defense still proved tough
to penetrate, our RoboCup team managed to score three to four goals in each game against them.

9.7 Conclusion

In this chapter we have described the high-level team strategy of the UvA Trilearn soccer simulation
team that participated at the RoboCup-2001 robotic soccer world championship. In addition, we have
also presented three intermediate versions of this team which were respectively used for testing our low-
level implementation, to qualify for RoboCup-2001 and to compete at the German Open 2001. These
intermediate versions have shown that the development of the UvA Trilearn team strategy has been an
incremental process. We have demonstrated the effectiveness of the individual components of this strategy
(heterogeneous players, communication, etc.) and showed that the combination of these features enables
the team to play well against different types of opponents. The final version of the UvA Trilearn team
that was described in this chapter was able to comprehensively beat the top three teams from the previous
world championship. Since these three teams were the best teams that we could practice against before
the start of the next world cup, this concluded our preparation for RoboCup-2001.

7It must be noted that the number of goals scored against FC Portugal is flattered in these results due to the fact that they
change their formation when trailing by two goals. Furthermore, the incremental versions of UvA Trilearn have all been
extensively tested against this team.



Chapter 10

Competition Results

During the project, the UvA Trilearn 2001 soccer simulation team has participated in two international
robotic soccer competitions: the German Open 2001 and the official RoboCup-2001 world championship.
In this chapter we present our results in these competitions and discuss our performances. When reading
this chapter it is important to realize that robotic soccer competitions cannot be regarded as controlled
experiments. We therefore want to emphasize the fact that we do not present our competition results as
a scientific validation of the techniques that we have used. These techniques have been discussed in the
previous chapters along with a number of controlled experiments which serve as their empirical validation.
However, we do believe that competition results can be seen as a useful evaluation of the system as a
whole. Participating in robotic soccer competitions has given us information concerning the strengths
and weaknesses of the various approaches that we used. As such, they have been of critical importance
for the development of our team. This chapter is organized as follows. In Section 10.1 we discuss several
advantages and disadvantages of robotic soccer competitions and present an overview of past competition
results. In Section 10.2 we then discuss the results of UvA Trilearn at the German Open 2001, while
Section 10.3 will describe our performance at the RoboCup-2001 world championship in Seattle (USA).

10.1 Introduction

Although robotic soccer as a discipline clearly has a very competitive nature, it is important to realize
that RoboCup is primarily a research initiative. The presence of competitions is therefore no prerequisite
for the domain to exist. However, organizing robotic soccer competitions has several advantages. For
example, competitions form hard deadlines for creating complete working systems. If a team wants to
compete they need to get all the system components operational and working together. The natural
desire to perform well can then provide a strong motivation for solving the challenging aspects of the
domain. Furthermore, robotic soccer competitions bring researchers together who have all tried to solve
the same problems. As such, the competitions provide a common platform for exchanging ideas. Since
all the participants have implemented their ideas in the same underlying architecture it is relatively easy
to compare different approaches using this standard test bed. An additional benefit is that competitions
cause a wide pool of teams to be created. After each competition a large number of source codes and
binary files from participating teams are made publicly available and can be used for controlled testing of
various techniques by others. This and the fact that many papers are published containing the research
contributions of these teams lead to continually improving solutions in each competition, since all the
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participants know that in order to win they must be able to outperform the top teams from the previous
event1. It can thus be concluded that competitions have the potential to accelerate scientific progress
within the robotic soccer domain.

However, organizing robotic soccer competitions also involves a number of potential dangers which might
slow down scientific progress. The most obvious one is that winning competitions becomes the main
priority at the expense of all else, including science. Especially if monetary prizes are awarded, many
people will focus only on winning and are likely to keep successful techniques secret from each competition
to the next. Therefore, monetary prizes are generally not given. In order to keep the focus on scientific
contributions, ‘scientific challenge’ awards are presented to teams who have demonstrated the best scientific
research results regardless of their performance in competitions. Another potential danger is that winning
solutions will be tuned too much to the low-level details of the domain. If the competitions are to serve
science however, the winning techniques should obviously be generally applicable beyond the domain in
question. Although in general it will not be possible to avoid some domain-dependent solutions, the
competitions should be such that these cannot be sufficient to produce a winning team.

Pre-RoboCup-96 was the first simulated robotic soccer competition using soccer server. It was held in
Osaka (Japan) in conjunction with the IROS-96 conference and was meant as an informal competition to
test the server in preparation for RoboCup-97. The teams in this tournament generally used very simple
strategies keeping their players in fixed locations and only moving them towards the ball when it was
close. RoboCup-97 was held in Nagoya (Japan) in conjunction with the IJCAI-97 conference and was the
first formal simulated robotic soccer competition. This competition was won by the team that exhibited
the best low-level skills. As the years progressed however, the crucial differences between the teams were
found more towards the higher strategic levels. The reason for this was that the low-level techniques that
had proven to be successful were used as a basis by other teams in subsequent competitions. As a result,
the differences among participating teams shifted to the more general levels. Interesting in this respect was
that as of 1998 it became a tradition that the previous champion participated with minimal modifications
in order to measure progress from each year to the next. At RoboCup-98 in Paris (held in conjunction
with the ICMAS-98 conference) the RoboCup-97 champion AT Humboldt participated as the benchmark
team and finished roughly in the middle of the final standings. This proved that the field of entries as a
whole was much stronger than the year before. In subsequent competitions however, the benchmark team
started to perform better indicating that it became more difficult to outperform the previous champion.
This was a direct result of the fact that most teams had solved their low-level problems and shifted their
focus towards the strategic levels. The best performance of a benchmark team came at RoboCup-2000 in
Melbourne (held in conjunction with the PRICAI-2000 conference) where the 1999 champion CMUnited
reached fourth place. Apart from the official world championships which have been held each year since
1996, several other competitions have also been organized. The top three teams of all the official RoboCup
competitions that have taken place (including those in 2001) are shown in Table 10.1.

In the remainder of this chapter we discuss the results of the UvA Trilearn 2001 soccer simulation team
at the German Open 2001 and at the RoboCup-2001 world championship. Although robotic soccer
competitions cannot be regarded as controlled experiments, we do believe that competition results can
be seen as a useful evaluation of the system as a whole. Since the overall goal is to create a team of
agents that can operate in an adversarial environment, it is interesting to observe how the team performs
against a wide range of previously unseen opponents. As such, participating in robotic soccer competitions
provides an insight into the strengths and weaknesses of various approaches.

1Note that this benefit only holds if similar rules are used as the basis for competition each year.
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Competition Location Winner Runner-up Third Nr

Pre-RoboCup-1996 Osaka Ogalets Sekine Waseda 8
RoboCup-1997 Nagoya AT Humboldt Andhill ISIS 29
Japan Open 1998 Tokyo Andhill Kasuga-bito II NITStones 10
Pacific Rim 1998 Singapore Kasuga-bito II KU-Sakura Cyberoos 9
RoboCup-1998 Paris CMUnited AT Humboldt Windmill W. 34
Japan Open 1999 Nagoya 11 monkeys YowAI Gullwing 11
RoboCup-1999 Stockholm CMUnited Magma Freiburg Essex Wizards 37
Japan Open 2000 Hakodate YowAI 11 Monkeys 2 TakAI 24
China RC 2000 HeFei City Tsinghuaeolus USTC II USTC I 10
EuRoboCup-2000 Amsterdam FC Portugal Brainstormers Essex Wizards 13
RoboCup-2000 Melbourne FC Portugal Brainstormers ATTCMUnited 34
German Open 2001 Paderborn FC Portugal Brainstormers Sharif Arvand 12
Japan Open 2001 Fukuoka YowAI FC Tripletta Team Harmony 27
RoboCup-2001 Seattle Tsinghuaeolus Brainstormers FC Portugal 42
China RC 2001 Kunming Wright Eagle Shu 2001 EveRest 12

Table 10.1: The top three teams of all the official RoboCup competitions that have taken place. The
last column denotes the number of participants (excluding non-qualified teams and withdrawals).

10.2 German Open 2001

The German Open 2001 was held at the Heinz Nixdorf Museums Forum in Paderborn (Germany) from
the 8th-10th June, 2001. It was the first official robotic soccer competition in which UvA Trilearn 2001
participated and mainly served as a testcase for the RoboCup-2001 world championship later that year.
Because of our initial decision to build a team from scratch, the majority of our time up to that point
had been spent on solving low-level problems. As a result, UvA Trilearn used a very simple and rigid
high-level strategy during this tournament in which each agent only had a few high-level skills to choose
from. A total number of 16 teams from six different countries had registered for the competition, four of
which withdrew before the start. The 12 remaining teams were divided into two groups of six and played a
round-robin tournament against the teams in their group. The first four teams from each group proceeded
to the next stage that was played according to a double elimination system2. This meant that the eight
remaining teams could not be eliminated from the competition before losing at least twice. After losing
one match a team thus still had a chance to win the tournament and this increased the likelihood that
the final standings would actually reflect the true order of merit between the teams.

Table 10.2 shows the results and several statistics of all the games played by UvA Trilearn during the
competition. In the round-robin stage we played five matches of which two were won, two were lost and one
was drawn. Two results were significant: the 2-5 loss against FC Portugal and the 16-0 win against Osna
BallByters. The former meant that UvA Trilearn became the first ever team in an official competition
that managed to score two goals in one match against FC Portugal, who had won both EuRoboCup-2000
and RoboCup-2000 without conceding a single goal. The match against Osna BallByters was important
because UvA Trilearn had to win by a difference of 15 goals in order to avoid finishing fourth in the group

2In this format each remaining team starts out in the winner’s bracket and continues to compete for the title until it has lost
two matches. When a team loses for the first time it is moved to the loser’s bracket where it plays against other teams that
have lost once. Eventually, the winner of the loser’s bracket will play the winner of the winner’s bracket in the final. If this
final is won by the team that won the winner’s bracket this team is the champion. If the loser’s bracket winner wins the
final however, both teams have lost once and have to play again to determine who becomes the champion.



CHAPTER 10. COMPETITION RESULTS 176

Round Opponent Affiliation Score Poss Def Mid Att

Group Aras Sharif Univ. of Technology 2-2 46% 13% 66% 21%
FC Portugal Universities of Aveiro/Porto 2-5 44% 24% 54% 22%
Lucky Lübeck University of Lübeck 4-0 70% 17% 56% 27%
Sharif Arvand Sharif Univ. of Technology 1-2 59% 34% 43% 23%
Osna BallByters University of Osnabrück 16-0 60% 0% 30% 70%

Elimination Dr. Web Saint-Petersburg University 0-1 48% 17% 48% 35%
RoboLog University of Koblenz-Landau 4-0 57% 17% 49% 34%
Dr. Web Saint-Petersburg University 0-1 49% 9% 50% 41%

29-11 54% 16% 50% 34%

Table 10.2: Results and several statistics of all the games played by UvA Trilearn at the German Open
2001. The ‘Poss’ column denotes the percentage of the total time during a match in which UvA Trilearn
was in ball possession. The last three columns respectively denote the percentage of the time in which the
ball was located in our defensive, middle and attacking part of the field. Note that these zones correspond
to three equal-length field parts over the full width of the field. The statistics were generated by RoboBase,
a logplayer and analysis tool for RoboCup logfiles [87]. UvA Trilearn reached 5th place in the competition.

and having to play the winner of the other group in the next stage. In an exciting goal chase we succeeded
in beating Osna BallByters by 16-0 which meant that we finished the group in third place. In the winner’s
bracket of the double elimination stage we lost our first match by 0-1 against the defensive Dr. Web who
were rarely able to reach our defensive area but nevertheless managed to score once. In the loser’s bracket
we then beat the Prolog-based German team RoboLog after which we again lost a very close match by
0-1 against Dr. Web3 in sudden-death overtime. This resulted in a fifth place in the final standings which
are shown in Table 10.3. The tournament was won by FC Portugal who beat Karlsruhe Brainstormers in
a repeat of the RoboCup-2000 final.

Place Team Affiliation

1. FC Portugal Universities of Aveiro/Porto, Portugal
2. Brainstormers University of Karlsruhe, Germany
3. Sharif Arvand Sharif University of Technology, Iran
4. Dr. Web Saint-Petersburg University, Russia
5. UvA Trilearn University of Amsterdam, The Netherlands
5. Aras Sharif University of Technology, Iran
7. RoboLog University of Koblenz-Landau, Germany
7. Rolling Brains University of Mainz, Germany

Table 10.3: Final standings (top eight teams) of the RoboCup German Open 2001.

During the tournament we discovered that the quality of the participating teams was much higher than
the year before. The differences between the teams were smaller and especially the group into which UvA
Trilearn was drawn proved to be very strong (the four teams that qualified from this group all finished
in the top six of the final standings). A lot of teams used a formation mechanism similar to Situation
Based Strategic Positioning (SBSP) introduced by FC Portugal a year before [56, 77] and this made the
positioning of players much more controlled. The most important conclusion that could be drawn from

3It was actually a mistake of the organization that we had to play Dr. Web so soon again, since according to the official
double elimination rules Dr. Web should have been placed in another part of the loser’s bracket.
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the competition was that our high-level strategy was not flexible enough to play well against different
types of opponents. Especially teams that played defensively proved difficult to beat for us since we had
trouble creating scoring opportunities against them. This was visible, for example, in the matches that
we played against Dr. Web where we did not succeed in scoring a goal despite the fact that most of the
time the action was located in their defensive area. It was clear that we had practiced too much against
FC Portugal 2000 and that our high-level strategy was tuned to perform well against teams that used
the same offensive playing style. Nevertheless, the results at the German Open were promising since they
convinced us that our lower levels worked well and that even with our rigid high-level strategy we were
competitive. As such, the tournament had been a good test case for RoboCup-2001 two months later.

10.3 The RoboCup-2001 World Championship

The RoboCup-2001 robotic soccer world championship was held at the Washington State Convention
Center in Seattle (USA) from the 2nd-10th August 2001 in conjunction with the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-01). UvA Trilearn had qualified for this tournament by
means of a qualification logfile [47] in which we beat the RoboCup-2000 champion FC Portugal 2000 by 4-2
and by a two-page research abstract describing the research focus and scientific contributions of the team
[20]. In comparison to the German Open we had improved our team in several areas by introducing inter-
agent communication, heterogeneous players and an advanced scoring policy. Furthermore, we improved
the team’s high-level strategy and increased its flexibility against different types of opponents. This was
done by extending the decision procedure of the players thereby giving them more options for choosing
an action in different situations. In addition, we improved our defensive strategy and implemented a new
goalkeeper with better interceptive capabilities than the one we used at the German Open. A total number
of 86 teams from 20 different countries had pre-registered for RoboCup-2001 of which 45 teams qualified
for the main event. Since three teams withdrew just before the start of the competition, the tournament
consisted of 42 teams which were divided into eight groups (six of five teams and two of six). The first
group stage was played according to a round-robin system in which the first three teams qualified for the
next round. After this, the 24 remaining teams were divided into four groups of six which again played a
round-robin from which the first two teams progressed to an eight-team double elimination stage.

Table 10.4 shows the results and several statistics of all the games played by UvA Trilearn during the
competition. The tournament started off dramatically for us with a 0-7 defeat in the very first game
against the eventual winner Tsinghuaeolus from China. The main problem that we had with this team
was that their players were very good at controlling the ball at high speed and keeping it away from close
opponents. For this they used a dribble-like action in which they moved the ball quickly from side to
side within their kickable range. As a result, our defenders were often outplayed since they predicted that
the ball would move very fast to the other side of the field due to its speed4. Nevertheless, UvA Trilearn
recovered well finishing second in the group after winning the remaining group games without conceding
a single goal. Especially our 6-0 victory against Living Systems, the successor team to RoboCup-99
runner-up Magma Freiburg, was a promising result at this stage. The second group stage was even more
successful for us: UvA Trilearn became first in the group after winning all five matches without conceding
a single goal. This included an 8-0 victory against first round group winner Cyberoos from Australia.
However, the most significant result in this round came against RoboCup-2000 winner FC Portugal 2000
(the benchmark team; see Section 10.1) who had won all their matches in the first group stage by a

4After the first group stage we corrected this by setting the estimated ball speed to zero when a player has the ball within
his kickable range. As a result, our defenders exhibited a more stable behavior and were not so easily outplayed. A number
of practice matches between UvA Trilearn and Tsinghuaeolus that were played after the competition actually showed that
with this modification the difference between both teams was much smaller: on average UvA Trilearn lost by about 1-3.
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Round Opponent Affiliation Score Poss Def Mid Att

Group I Tsinghuaeolus Tsinghua University 0-7 37% 44% 45% 11%
Living Systems Living Systems AG 6-0 67% 11% 53% 36%
Harmony Hokkaido University 3-0 54% 25% 40% 35%
rUNSWift Univ. of New South Wales 2-0 60% 20% 42% 38%

Group II TUT-groove Toyohashi Univ. of Techn. 6-0 56% 8% 52% 40%
A-Team Tokyo Institute of Techn. 4-0 62% 6% 59% 35%
FC Portugal 2000 Univ.’s of Aveiro/Porto 6-0 59% 27% 49% 24%
Cyberoos CSIRO (Australia) 8-0 53% 12% 49% 39%
Rolling Brains University of Mainz 5-0 53% 2% 57% 41%

Elimination Wright Eagle Univ. of Science/Techn. 2-1 50% 19% 49% 32%
FC Portugal 2001 Univ.’s of Aveiro/Porto 1-4 49% 42% 42% 16%
FC Portugal 2000 Univ.’s of Aveiro/Porto 6-1 60% 29% 59% 12%
Brainstormers University of Karlsruhe 0-1 45% 35% 31% 34%

49-14 54% 22% 48% 30%

Table 10.4: Results and several statistics of all the games played by UvA Trilearn at RoboCup-2001.
The statistics were generated by RoboBase, a logplayer and analysis tool for RoboCup logfiles [87]. For
the meaning of these statistics we refer to Table 10.2. UvA Trilearn reached 4th place in the competition.

combined score of 82-0. We beat FC Portugal 2000 by 6-0 and this made us the first team ever to record
a victory against them in an official competition. In the winner’s bracket of the double elimination stage
we won a tight first match against the Chinese team Wright Eagle by 2-1 in sudden-death overtime after a
mistake of their goalkeeper. In the semi-final we then played the tournament favourites FC Portugal 2001,
the successor team to RoboCup-2000 champion FC Portugal 2000. We lost this game by 1-4 although we
were still leading by 1-0 after three-quarters of the total playing time. At this point however, FC Portugal
2001 changed their formation by moving their goalkeeper to the center line which gave them an extra
field player. This new strategy proved to be very effective. We were no longer able to penetrate their
defense (which was positioned very far forward now) and the resulting pressure enabled them to score
four goals at the end of the match. In our first match in the loser’s bracket we again had to play against
the benchmark team FC Portugal 2000 whom we beat by 6-1 on this occasion. We were then eliminated
from the competition by RoboCup-2000 runner-up Karlsruhe Brainstormers who beat us by 0-1 in a close
match. The Brainstormers took the lead with an early goal and although we managed to put pressure
on our opponents on several occasions we were not able to score due to their tight defense and good
goalkeeper. Our best chance to equalize came towards the end of the match when a shot just missed the
goal. This meant that UvA Trilearn finished the competition in fourth place. The final of RoboCup-2001
was between Tsinghuaeolus and Karlsruhe Brainstormers who had beaten FC Portugal 2001 in the loser’s
bracket final. Tsinghuaeolus won the match by 1-0 in sudden-death overtime.

The final standings (top eight teams) of the RoboCup-2001 Simulation League tournament are shown in
Table 10.5. During the competition it was clear that the UvA Trilearn high-level strategy had become
more flexible as compared to the German Open. We were now able to play well against different types of
opponents and also managed to score goals against defensive teams. The main philosophy of UvA Trilearn
was to keep the ball moving quickly from each player to the next and preferably in a forward direction. In
addition, the players often tried to cut through the opponent’s defense by passing the ball into the depth
in front of the wing attackers at the side of the field. In this way, the team often succeeded in moving the
ball rapidly to the enemy half of the field thereby disorganizing the opponent team. The effectiveness of
this strategy was greatly enhanced by the fact that we used heterogeneous players on the wings. Although
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Place Team Affiliation

1. Tsinghuaeolus Tsinghua University, China
2. Karlsruhe Brainstormers University of Karlsruhe, Germany
3. FC Portugal 2001 Universities of Aveiro/Porto, Portugal
4. UvA Trilearn University of Amsterdam, The Netherlands
5. FC Portugal 2000 Universities of Aveiro/Porto, Portugal
5. Wright Eagle University of Science & Technology, China
7. FC Tripletta University of Keio, Japan
7. YowAI Tokyo University of Electro-Communications, Japan

Table 10.5: Final standings (top eight teams) of RoboCup-2001.

these players generally became tired more quickly, it was their greater speed that enabled them to reach
the deep ball before the opponent defenders and this usually led to a dangerous situation in front of the
enemy goal. We were therefore surprised to see that only very few teams made use of heterogeneous
players and consider their use as one of the main strategic advantages that UvA Trilearn had over most
other teams. RoboCup-2001 was won by the team that exhibited the best all-round performance (ball
control as well as strategy). Although obviously disappointed to lose out on a top-three position, we were
satisfied with the overall result because we had shown that we were fully competitive with all the other
teams. Furthermore, we managed to defeat many strong teams that had already participated for several
years. The final standings meant that UvA Trilearn was the best newcomer to RoboCup in the year 2001.

Apart from the regular simulation league competition, UvA Trilearn also took part in the Scientific
Evaluation competition which is organized yearly to encourage the transfer of results from RoboCup to
the scientific community at large. In this competition each participating team played a full-length game
against a benchmark team (FC Portugal 2000) of which the result served as a base-line. After this, another
game was played against this opponent in which the participating team had to deal with a handicap that
was not known in advance (the handicap did not affect the benchmark team). This year the handicap
consisted of the fact that the dash power rate was significantly lower when a player tried to dash in the
upper half of the field as seen on the soccer monitor. As a result, he would be much slower in this area.
It was expected that a more adaptive team would be able to cope better with this and would respond
by using the opposite wing more often. Unfortunately, UvA Trilearn did not finish among the top three
teams in this competition5. Another competition in which we participated was the Coach Substitution
competition. In this competition a fixed team was chosen (Gemini for group A and AT Humboldt for group
B) which played matches against itself using different coaches for both sides. A coach was only allowed
to select heterogeneous players at various field positions and could make three substitutions during the
game6. The coach associated with the winning team would be the ‘winner’ of the match. This competition
was organized for the first time and mainly served as a testcase for subsequent years. We participated in
this competition with the same coach that we used to substitute players for our UvA Trilearn team and
reached second place out of a total number of six coaches. It must be noted however, that the format of
the competition was such that the results could not be regarded as scientifically conclusive. The coach had
to select the player types before the start of the match, while he had no information about the team that
he was about to ‘coach’. He thus had no idea about the team’s strategy and did not know how effective a
faster player in a certain position would be. The outcome of a game therefore depended on how well the
selected player types fitted into the unknown team strategy giving the results a random character.

5Apart from the top three, the full result of this competition was never announced.
6This is different from the standard coach competition in which the coach also gives advice to the players during the game.
In order to enable the coach to work with different teams, a standard coach language is used for communication.
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Chapter 11

Conclusion and Future Directions

Throughout this thesis we have described the incremental development and main features of the UvA
Trilearn 2001 robotic soccer simulation team (see also [19, 21]). As such, the thesis can be regarded as a
handbook for the development of a simulated robotic soccer team. In combination with the source code
[48] that we have released it provides a solid framework for new teams to build upon and it can serve as
a basis for future research in the field of robotic soccer simulation. In this chapter we provide a number
of concluding remarks and we summarize the main features of our team (Section 11.1). Furthermore, we
will also outline several promising directions for future work (Section 11.2).

11.1 Concluding Remarks

Our main objective for the soccer simulation project was twofold. Firstly, we had to set up the project and
provide a solid foundation for it which would enable others to continue after our graduation. Secondly,
we had to put up a good performance at the RoboCup-2001 robotic soccer world championship in Seattle
(USA). Despite the fact that these two objectives were not completely compatible (see Section 1.3), we
feel that both were met to the best of our abilities. We have designed a modular agent architecture that
contains all the necessary components for a simulated soccer agent and although the available time did
not allow us to implement each component in an optimal way, we were able to optimize the ones which
were most crucial for the success of the team. In addition, we managed to produce a relatively simple
but very effective implementation for the remaining components and as a result the team had no clear
weak points. This enabled us to reach fourth place at RoboCup-2001 thereby outperforming many teams
that had already participated for several years and that had performed well at previous competitions. In
the remainder of this section we will outline the main features of our team and we will discuss the way
in which they have enhanced the overall performance. After this, we will mention several related aspects
which have enabled us to set up a solid framework and as such have contributed to the final result.

The main features of the UvA Trilearn 2001 robotic soccer simulation team can be summarized as follows:

• Multi-threaded three-layer architecture (Chapter 4). The UvA Trilearn agents are capable of
perception, reasoning and acting. Our multi-threaded agent architecture allows the agents to use
a separate thread for each of these three tasks. In this way the delay caused by I/O to and from
the server is minimized so that the agents can spend the majority of their time thinking about their

181
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next action. Furthermore, the architecture of each agent consists of three layers. The threads used
for perception and acting form the Interaction Layer which takes care of the interaction with the
environment and which hides the soccer server details as much as possible from the other layers.
On top of this, the Skills Layer uses the functionality offered by the Interaction Layer to build an
abstract model of the world and to implement the various skills of each agent. The top layer is the
Control Layer which selects the best possible action from the Skills Layer depending on the current
world state and the current strategy of the team. The UvA Trilearn agent architecture provides a
solid foundation for the development of a simulated soccer agent. It is highly modular and contains
all the components which are necessary for a good performance in every aspect of the game.

• Flexible agent-environment synchronization scheme (Chapter 5). This scheme enables the
agents to determine the optimal moment during a cycle for sending an action command to the server.
As a result, the agents are capable of performing an action in each cycle which is based on the most
recent information about the state of the world when possible. This has a significant influence on
the performance of the team. Compared to many other teams it was clear that our agents were
capable of executing a larger number of actions since no action opportunities were missed. This
often allowed us to gain an advantage over the opponents. Furthermore, our agents were always able
to respond quickly to changes in the environment due to the fact that the synchronization method
used maximizes the chance of basing an action choice on visual information from the current cycle.

• Accurate methods for object localization and velocity estimation (Chapter 6). The agent
world model can be regarded as a probabilistic representation of the world state based on past
perceptions. It contains information about all the objects on the soccer field as well as various
methods which use the low-level world state information to derive higher-level conclusions. For each
object an estimation of its position and velocity are stored (among other things) together with a
confidence value indicating the reliability of the estimate. By integrating the known soccer server
dynamics into a particle filter algorithm we were able to compute very accurate estimates for the
positions and velocities of dynamic objects. This increased the performance of the team, since the
agents could base their reasoning process on a more accurate world state representation.

• Layered skills hierarchy (Chapter 7). The skills which are available to theUvA Trilearn agents can
be divided into different layers which together form a hierarchy of skills. The layers are hierarchical
in the sense that the skills in each layer use skills from the layer below to generate the desired
behavior. The skills in the bottom layer can be specified in terms of basic soccer server action
commands. This framework has made it possible to reason about the various skills that an agent
can perform at a high level of abstraction instead of having to deal directly with low-level server
commands. In our current implementation, the UvA Trilearn agents are capable of performing many
skills which gives them a large number of action alternatives in a given situation. Despite the fact
that all skills have been hand-coded, their implementation has proved to be very effective.

• Scoring policy (Chapter 8). This policy enables the agents to determine the optimal target point
in the goal together with an associated probability of scoring when the ball is shot to this point in
a given situation. It is partly based on an approximate method that we have developed for learning
the relevant statistics of the ball motion which can be regarded as a geometrically constrained
continuous-time Markov process [22, 49]. Since scoring goals is one of the main objectives in a
soccer game, this scoring policy has proved to be very useful.

• Effective team strategy (Chapter 7). To select an appropriate action, the UvA Trilearn agents
make a distinction between active and passive situations depending on whether they currently have
an active role in the game or not. If an agent is in a passive situation he moves to a strategic
position on the field in anticipation of becoming active again. If an agent is in an active situation
he chooses an action based on the current position of the ball and on the positions of other players.
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The UvA Trilearn team uses a 4-3-3 formation which has proved to be very effective. The main
philosophy is to keep the ball moving quickly from each player to the next and preferably in a forward
direction. In addition, the agents often try to cut through the opponent’s defense by passing the
ball into the depth in front of the wing attackers at the side of the field. In this way, the team
often succeeds in moving the ball rapidly to the enemy half of the field thereby disorganizing the
opponent team. Furthermore, the effectiveness of this strategy is greatly enhanced by the fact that
we use heterogeneous players on the wings. The greater speed of these players as compared to default
players often enables them to reach the deep ball before the opponent defenders and this usually
leads to a dangerous situation in front of the enemy goal.

The features mentioned above have clearly formed the basis of the success of UvA Trilearn at RoboCup-
2001. However, the following important aspects have also contributed positively to the final result:

• Incremental development (Appendix A.2). Throughout the project we have consequently fol-
lowed an incremental software development approach. The main advantage of this approach was
that we had a working system at all times that could be tested and compared to previous versions.
This helped us meet the deadlines provided by the competitions in which UvA Trilearn participated
and enabled us to build a large system (±29,000 lines of code) in a relatively short period of time.

• Study of related work and the soccer server simulation environment (Chapters 2 and 3).
During the initial stages of the project much time was spent on studying literature on the subject of
multi-agent systems and on simulated robotic soccer in particular. This has enabled us to become
familiar with the robotic soccer domain and has provided us with a great deal of knowledge that
has been very useful throughout the project. Furthermore, we studied every feature of the soccer
server and wrote small test programs to observe its behavior. In this way, we developed a thorough
understanding of how the simulation worked and during the remainder of the project this proved to
be worthwile. It has enabled us to tune our low-level implementation optimally to the characteristics
of the server1 and has led to faster debugging of low-level algorithms.

• Software Engineering Issues (Appendix A). To facilitate future use of our code by others (and
by ourselves) much attention during the project has been focused on software engineering issues.
We have consequently followed an object-oriented design methodology leading to a logical class
hierarchy and highly modular code. Here it must be noted that the distribution of tasks between the
project members was such that it preserved the conceptual integrity of the system (Appendix A.3).
Furthermore, we extensively documented our code (±8,000 lines of documentation) and developed
a multi-level log system which accelerated the debugging process considerably (Appendix A.4).

11.2 Future Work

The soccer server simulation environment contains many challenges which make it an interesting domain
in which to conduct research. Throughout this thesis we have presented our solutions to various problems
which are inherent in the simulated robotic soccer domain. However, although UvA Trilearn peformed
well at the RoboCup-2001 world championship, it is still possible to improve the team in many ways. In
this section we will outline several promising directions for future work.

1This is not necessarily positive from a scientific perspective, but essential for the success of the team. It is important to
realize that in order to create a standard simulation testbed, several choices must be made concerning the implementation
of realistic models. The algorithms developed in the domain will then always be tuned to these choices. If the simulation
changes, the general properties of many solutions will still be correct, but the details of their implementation have to be
altered. This is the same for real-world algorithms: they will no longer produce correct results if the laws of physics change.
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• Multiple pieces of information in a single particle. It is possible to further improve the
position, orientation and velocity estimates for dynamic objects in the world model of the agents
by including each of them into a single particle. The resulting particle set can then be updated by
propagating the particles from each cycle to the next based on the current observation and in case
of the agent himself on the action that he has performed. Note that one will need more particles for
this filter due to the increased dimensionality of the state space.

• Integrating uncertainty in visual perceptions into the confidence of object information.
In our current implementation, the world model of the agents does not explicitly store the uncertainty
in visual perceptions to indicate the reliability of object information. This uncertainty is only
implicitly included into the position and velocity estimates themselves as a result of particle filtering.
The only reliability measure that is currently present comes in the form of a confidence value for
each object that represents the time at which this object was last observed. If this confidence value
drops below a certain threshold, then the object information is neglected in the reasoning process.
However, it would be more accurate to also include the perceptual uncertainty into the reliability
measure. This can be done, for example, by incorporating the variance of a perception into the
confidence value and letting it propagate with time. In addition, it is possible to use the resulting
confidence value more explicitly in the reasoning process.

• The use of learning techniques for implementing skills. In our current implementation,
all the skills which are available to the agents have been hand-coded. They make use of several
configurable parameters which have been given a value based on observations made during practice
matches. A more principled way to implement the skills would be to learn them using a machine
learning algorithm. One could use, for example, reinforcement learning. The main advantage of this
approach is that it provides a way of programming the agents by means of reward and punishment
without needing to specify how a task has to be achieved. However, the complexity of the robotic
soccer domain (huge state space, many possible actions and strategies, partial observability of state
information, etc.) make the use of traditional reinforcement learning methods difficult. Following
[79], a possible way to tackle this complexity is to define sequences of basic commands instead of
separate ones in order to reduce the number of actions and decisions available to the agents.

• Stronger commitment to previous decisions. In our current implementation, an agent commits
to only a single action in each cycle (‘weak binding’) instead of generating a ‘plan’ consisting of a
sequence of actions over a number of cycles. This means that if an agent executed part of a ball-
interception skill in the previous cycle there is no guarantee that he will continue to execute the next
part in the current cycle. The situation is completely reevaluated before each action opportunity and
an action is selected based on the current situation. This has the advantage that in dynamic domains,
such as that provided by the soccer server, the agents are flexible to changes in the environment
since they always select the best possible action based on the current state of the world. However,
a disadvantage is that it can lead to oscillations between different skills in consecutive cycles2. A
better solution would be for the agent to commit to a certain skill for a longer period of time. It
is important that this time period is not too long however, since the dynamic nature of the soccer
server simulation environment requires the agent to remain flexible to environmental changes.

• An adaptive scoring policy. Our current solution to the scoring problem is based on a fixed
goalkeeper and a fixed distance to the goal. This solution can be improved by incorporating an extra
feature into the model representing the distance to the scoring point as was outlined in Section 8.6.
Furthermore, the probability of passing the goalkeeper should be adaptive for different goalkeepers.
This means that the model should incorporate information about the current opponent goalkeeper
instead of using that of a particular team. The desired case would be to let the model adapt itself

2Note that in practice this will not often happen due to the fact that the environment changes gradually.
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during the game, using little prior information about the current goalie. This is a difficult problem
because learning must be based on only a few scoring attempts. It is therefore important to extract
the most relevant features and to parametrize the intercepting behavior of the opponent goalkeeper
in a compact manner that permits on-line learning. A possible way to do this might be through the
use of statistics collected by the coach.

• An extended positioning mechanism. In our current implementation, the strategic position
of an agent depends only on the agent’s home position inside the current formation and on the
position of the ball which serves as an attraction factor. It is possible to extend this positioning
mechanism by incorporating additional factors such as the positions of other players. Following
[115], the strategic position of an agent can then be computed according to a multiple-objective
function which maximizes the distance from opponents and passive teammates (repulsion factors)
and minimizes the distance to the enemy goal and to the teammate with the ball (attraction factors).

• Switching roles inside dynamically changing formations. In our current implementation, the
UvA Trilearn team always uses the same 4-3-3 formation in which each agent has a fixed role. It is
possible to extend this implementation by defining multiple formations (4-4-2, 3-5-2, etc.) and by
switching among these formations depending on the score in the game or the tactic of the opponent
team. Furthermore, it is desirable that the agents are capable of switching roles inside a formation
when the situation asks for it. This can happen, for example, if an agent moves very far from
his strategic position when intercepting the ball. Two agents could then decide to switch roles if
the sum of the distances to their respective strategic positions would decrease when doing so. In
general, the decision when to switch roles should depend on the resources which are available for
filling a particular role. Assume, for example, that agent a1 has role r1 and agent a2 has role r2. In
this case, a clear reason for switching roles would be if a1 has more of the resources necessary for
filling r2 than a2 does and likewise a2 for r1. When switching roles it is important that the agents
involved somehow agree upon making the switch in order to avoid that a single role will be filled
by multiple agents. Another problem arises when the switch involves heterogeneous players with
different abilities. For certain roles, these abilities might not have the desired effect.

• Exploiting the potential of heterogeneous players at various field positions. In our current
implementation, only five roles inside the formation of the team are filled by non-default players:
two wing attackers, a central attacker and two wing defenders. The player types for these roles are
selected according to a utility function that combines the values of various player parameters. It
must be noted that the choice of roles to be filled by heterogeneous players is based on observations
made during practice games and on the assumption that the team uses a 4-3-3 formation which is
the standard for attacking along the wings. A more general solution would be to develop a method
for predicting the utility of a player type depending on the role of this player. In this way, it can
be determined which player types are best suited for which roles in a given formation. A possible
approach would be to use machine learning techniques (e.g. a genetic algorithm) to learn an effective
distribution of heterogeneous players on the field.

• Multi-agent modeling using a coach agent. In our current implementation, individual agent
decisions are often affected by the behavior of opponent players, but strategic decisions for the team
as a whole are mostly fixed. Ideally however, the team strategy should be adjusted in response to
adversarial behavior. A promising approach is to use the coach agent for this purpose. The coach
receives noise-free global information about the state of the world and has less real-time demands
than the players. As a result, he can spend more time deliberating over strategies. The online coach
is therefore a good tool for analyzing the strengths and weaknesses of the opponent team and for
giving advice on the best possible strategy. To this end, the coach must be able to classify enemy
behavior based on certain features. He can then decide which strategy is most appropriate for the
given behavior class. The coach can determine, for example, the playing style of the opponent team
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and based on this he can recommend to change the formation or to switch player types for a certain
role inside the current formation. In turn, the players must know how to interpret the coach’s advice
and how to act upon it.



Appendix A

Software Engineering Aspects

Creating a complete multi-agent system, such as a simulated robotic soccer team, is not a straightforward
task. The main difficulty arises from the fact that such a system consists of many different components
which have to operate together in an appropriate way. Furthermore, building each separate component
is a difficult task in itself. It is obvious that a project of this scale cannot become a success if it is not
well organized. Throughout the project we have therefore paid much attention to the software engineering
aspects of our implementation. In order to facilitate future use of our code by others we have set up a
software architecture that allows for the various components to be combined in a clear and orderly manner.
This has enabled us (and will enable others) to extend and debug large amounts of code in a structured
way and made it possible to follow an incremental software development approach. Unfortunately, current
literature in the field of simulated robotic soccer pays little attention to the subject of software engineering
([53] is an exception). We therefore feel that it is appropriate to provide some details in this appendix. We
will mainly focus on problems that typically arise in large software projects and on how we have tried to
avoid them. This appendix is organized as follows. In Section A.1 we discuss several implementation issues
such as our documentation system and the programming language that we used. Section A.2 is devoted
to incremental development, the software development approach that we have followed throughout the
project. Section A.3 shortly addresses the issue of manpower distribution and presents a model for dividing
tasks between various programmers which protects the conceptual integrity of the system. Finally, Section
A.4 contains a description of a tool that we have developed to speed up the debugging process.

A.1 Implementation Issues

Two important choices for the implementation of our team were which programming language to use and
for which platform it should be developed. We have chosen to use the C++ programming language [105]
and to compile the code using a gcc compiler. C++ was mainly chosen for reasons of performance and
because the language supports an object-oriented approach. Especially the performance aspect is crucial in
the soccer server simulation environment due to the real-time nature of the domain. We have consequently
followed an object-oriented design methodology leading to a logical class hierarchy and highly modular
code. The team has been built and tested for the Linux (Red Hat) operating system1 since it represents
the standard which is used during competitions. Furthermore, most soccer simulation teams have been
developed for this platform and have released their Linux binaries on the web. Using Linux thus makes

1It also works under Solaris after making some changes to compensate for the differences in the gcc libraries of both systems.
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it easier to test against these teams. The multi-threaded agent architecture described in Section 4.2 has
been implemented using POSIX threads [12] as they appeared intuitively appropriate for the requirements
and (assuming implementation in C++) have native support in the Linux operating system.

To facilitate future use of our code by others much time during the implementation has been spent on
extensively documenting our code. For this we used the documentation system Doxygen [114]. This system
can be used for different programming languages (C++, Java, IDL and C) to automatically generate a
reference manual from a set of documented source files. It is currently also used as the documentation
system for the GNU Standard C++ Library and the Red Hat Linux Packaging Manager. To use the system
one needs to document various parts of the program (classes, class variables, methods, etc.) by describing
their functionality at the location where they are defined. This has the advantage that the documentation
is located close to the definition which makes it easier to keep it consistent with the source code. Doxygen
then extracts this information and generates an on-line documentation browser (in HTML) and/or an
off-line reference manual. There is also support for generating output in RTF (MS-Word), PostScript,
hyperlinked PDF, compressed HTML and Unix man pages. Doxygen can also be used to extract the
code structure from a set of source files by visualizing the relations between the various elements through
automatically generated dependency diagrams, inheritance diagrams and collaboration diagrams. These
functionalities were all utilized during the development of the UvA Trilearn soccer simulation team.

If several people (in our case two) are working on the same project, version management becomes an
important issue. The version control system that we have used during the development of our team is
CVS (Concurrent Versions System). This widely used system allows one to store old versions of files and
to keep a log of who made changes and when and why they were made. Unlike simpler systems (RCS,
SCCS), CVS does not only operate on one file or one directory at a time, but on hierarchical collections of
directories consisting of several version controlled files. CVS has helped us to manage different versions of
our team and to control the concurrent editing of source files among multiple authors. It has enabled us
to store various releases in a convenient way and made it possible to return to a previous version if some
extension or update did not show the intended result. Currently, the implementation of our team consists
of approximately 29,000 lines of code of which about 8,000 are documentation lines2. This large amount
of code, together with the fact that many extensions are required each year to improve the team and to
accommodate changes made to the soccer server simulation environment, indicates that it is necessary to
keep the code well structured. Following an incremental approach and using the above-mentioned tools
makes it easier to achieve this.

A.2 Incremental Development

The main problem when building a large system, such as a simulated robotic soccer team, is that its
conceptual structure is too complex to be completely and accurately specified in advance and too complex
to be built without faults. We have therefore implemented our team according to a software development
technique called incremental development [8, 62, 68]. This approach dictates that a system should first
be made to run, even though it does nothing useful except for creating the proper set of dummy objects.
Each object is then gradually refined by adding more and more functionality until the system is fully
‘grown’. The main advantage of this approach is that it gives one a working system at all times (which
is good for moral) that can be tested and compared to earlier versions. Furthermore, it necessitates a
top-down design since it amounts to top-down growing of the software.

We have applied the incremental approach by first creating an extremely simple system that consisted of
three threads that could perform the basic loop of receiving information from the server, processing this

2This could be checked using Doxygen that also outputs the formatted source code without the comments.
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information and sending an action to the server. Each component in this system was built in a simple
way only performing its task at a very elementary level. Some components would even do nothing just
being implemented as void subroutines taking their correct place in the overall architecture. Although
this initial system clearly did not do much, it certainly did it correctly and it could be regarded as our first
‘working’ version. We then progressively refined this simple implementation by extending the functionality
of the different components one by one while keeping the architecture as a whole intact. We started by
refining the ActHandler component (see Figure 4.2) and by implementing our Flexible External Windowing
synchronization scheme (see Section 5.3.4). This made it possible to send a command to the server in each
cycle and enabled the agent to perform his first basic actions. We then implemented the SenseHandler
component which parsed the messages that arrived from the server and stored the information in a simple
world model. After this, the world model was gradually extended and using the information contained
in it we started to create a version of our team that could actually play a game of soccer. This led to
the De Meer 5 soccer simulation team (see Section 9.5.1) that was mainly used for testing our low-level
implementation. Subsequently, the action selection policy for the agents has been progressively refined to
create more sophisticated versions of our team. Following this approach had several advantages. Firstly,
we always had a working system and as a result were always sure to have a team ready for the competitions
in which we participated. Incremental development can thus be seen to protect against schedule overruns
(at the cost of possible functional shortfall). Furthermore, the approach enabled us to thoroughly test the
various components of the system and made it easier to locate faults since we always knew that they had
to originate from the last refinement step.

A.3 Manpower Distribution

An important aspect of a software project is how to divide the work over the different (in our case two)
team members. A conventional method is to partition the task equally over the available people which are
each responsible for the design and implementation of their part. This has several disadvantages however.
Firstly, it usually leads to systems which lack conceptual integrity (i.e. unity of design). It is better if a
system reflects one set of design ideas, than to have one that contains many good but independent and
uncoordinated ideas. Large programming systems are usually not conceptually integrated since the design
is separated into many tasks done by many men. To achieve conceptual integrity, a design must proceed
from one mind or a small group of agreeing minds. Every part of the system must reflect the same
philosophies. Furthermore, partitioning a task among multiple people occasions extra communication
effort in the form of training and intercommunication. Especially the extra intercommunication, which
is usually large for software projects and which increases quadratically (n(n − 1)/2) with the number of
team members, quickly dominates the decrease in individual task time brought about by the partitioning3.
A major part of the cost of a system lies in this communication and in correcting the ill effects of
miscommunication. The number of minds that have to be coordinated thus affects the total cost and
quality of the system. This suggests that you want a system to be built by as few minds as possible
[8]. However, schedule deadlines usually dictate that building a large system requires many hands. This
leads to a difficult problem. For efficiency and conceptual integrity of a system one needs a small team of
good people to design and implement it. Yet, for large systems one desires a way to bring considerable
manpower to bear so that the system can be finished on time. How can these two needs be reconciled?

A proposal by Harlan Mills [61] offers a creative solution to this problem that we have consequently
followed throughout the project. He suggests that a large system should be built by a small team (or
several small teams) of software developers which is organized like a surgical team. The ‘surgeon’ (Mills
calls him the chief-programmer) is the leader of the team and is responsible for the end product, whereas

3[8] actually shows that adding manpower to a late software project makes it later (Brooks’ law).
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his assistants are there to help him design and construct the system. An example is the ‘co-pilot’ who can
be seen as the alter ego of the surgeon: he knows the complete design and all the code that has been written
and gives advice on possible improvements. The surgeon can use this information for making changes to
the code, but is not bounded to do so. Other examples are the ‘editor’ who reviews the code (including
documentation) and the ‘tester’ who is responsible for testing the system. In this setup, the conceptual
integrity of the system lies in the hands of the surgeon. This means that instead of each team member
‘cutting’ away at the problem, only one person does the real cutting and the others give him support
that will enhance his effectiveness and productivity. This chief-programmer surgical team organization
offers a way to get the product integrity of one or a few minds and the total productivity of many helpers
with radically reduced communication. We have adopted this approach during the implementation of the
UvA Trilearn team: one team member played the role of the surgeon, whereas the other performed the
combined tasks of the other members of the surgical team4. In combination with the incremental approach
described in Section A.2 this has enabled us to build a large system in a relatively short period of time.

A.4 Multi-Level Log System

During the development of autonomous agents it is important for the designer to be able to trace their
action choices and to understand why they act as they do. When an agent does something unexpected
or undesirable, the designer needs a way to isolate precisely why the agent took such an action. In the
soccer server simulation environment this is not straightforward however. This is caused by the fact that
an enormous amount of data passes through the system when a game is played which makes it difficult to
find the source of a problem. Each agent is controlled by a separate client process and on average receives
and parses 22 messages (10 sense body messages, 7 see messages and 5 say messages) from the server
in one second. As a result, it is impossible to keep track of the complete data flow that is running through
the system during a 10-minute match. Printing information for debugging purposes, for example, quickly
leads to huge data files and drawing relevant conclusions from these data is a very time-consuming effort.
This makes it difficult to identify what exactly caused an agent to act as it did in a given situation. When
an agent performs an unexpected action this can be caused, for example, by an error in the processing of
sensory information or by a fault in the reasoning process.

To avoid being overwhelmed with data, it is clearly desirable for the observer to be able to trace only certain
parts of the agent program at a level of abstraction that he chooses. To this end, we have implemented
a multi-level log system based on the ideas presented in [81]. This system enables the user to specify the
abstraction level from which he desires information and to log this information for debugging purposes.
The programmer can then trace the recorded information to find why the agent took each of his actions
and to identify which parts of the agent have to be altered. The key to this approach is the fact that the
relevant agent information is organized in layers which are defined by the user. These layers can correspond
to agent-specific information (e.g. his internal state) or to higher-level reasoning processes for a particular
purpose (e.g. skills execution or action selection). In general, there is far too much information available
to display all of it at all times. Furthermore, it is usually not necessary to receive the information from
all the layers during the debugging process. The imposed hierarchy therefore allows the user to select at
which level of detail he or she would like to probe into the agent. This makes it possible to zoom into the
details that are important for the current situation and to hide the details from the other layers.

We have implemented this multi-level log system in the form of a Logger class (see Section 4.3). This class
allows the programmer to specify the abstraction level(s) from which he desires information and contains

4A similar recipe was followed for the effort of writing this thesis. The only difference was that the authors switched roles for
this task.
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an output stream for writing this information (usually a file). During his execution, the agent logs certain
information by calling a method from the Logger class. The information is written to the specified output
stream only if the number associated with the layer from which the information originates falls within the
range of layers from which the user desires information. Table A.1 shows the information hierarchy that we
have defined in our implementation of the log system. Here it must be noted that we have not completely
specified each level for reasons of clarity. Instead, we only show ranges of levels which correspond to the
main components of the agent. When a match is replayed using the logplayer, the gathered information
for a certain level can be used to determine why an agent executed a specific action in a given situation.
Throughout the project, our log system has been a crucial tool for the development of the UvA Trilearn
agents which has accelerated the debugging process considerably.

Levels Information

1-20 communication with the server
21-30 updates to the world model
31-60 the state of the world model
61-100 skills execution
100-150 action selection

Table A.1: Information hierarchy for our multi-level log system.
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