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Abstract

Principled game-theoretic techniques exist for
solving the problem of action coordination in a
group of agents, however they typically suffer
from an exponential blowup of the action space
when many agents are involved. Coordination
graphs (Guestrin et. al., 2002) offer tractable
approximations via a context-specific decompo-
sition into smaller coordination problems, and
they are based on an iterative communication-
based action selection procedure. We propose
two extensions that apply when the agents are
embedded in a continuous domain and/or com-
munication is unavailable.

1 Introduction

Multiagent Systems (Weiss, 1999) is a relatively
new field that has received considerable atten-
tion both in theory and applications. From an
AI perspective, we can think of a multiagent
system as a collection of agents that coexist in
an environment, interact (explicitly or implic-
itly) with each other, and try to optimize a per-
formance measure.
In this work we are interested in fully coop-

erative multiagent systems in which all agents
share a common goal. A key aspect in such
a system is the problem of coordination: how
the individual agents can best choose their ac-
tions in order to successfully achieve a common
goal (Boutilier, 1996).
Although in principle game theoretic tech-

niques can be applied to solve the coordina-
tion problem (Osborne and Rubinstein, 1994),
in practical situations involving many agents,
even modeling an n-person game is intractable:
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the joint action space is exponentially large in
the number of agents. However, one can often
exploit the particular structure of a coordina-
tion problem in order to reduce its complexity.
A recent approach involves the use of a coor-

dination graph (CG) (Guestrin et al., 2002a).
This is a graph where each node represents
an agent, and edges between nodes indicate
that the corresponding agents have to coor-
dinate their actions. In a context-specific
CG (Guestrin et al., 2002b) the topology of the
graph is dynamically updated based on the cur-
rent context.
In this paper we extend a CG in two ways.

First, we focus on agents that are embedded
in a continuous domain (for example robotic
agents in a soccer field) and are able to per-
ceive their surroundings with sensors. For such
a multiagent system, connectivity relationships
between nodes in the coordination graph imply
spatial relationships between agents, while the
context is characterized by a continuous state
variable. We propose a way to ‘discretize’ the
context by appropriately assigning roles to the
agents (Spaan et al., 2002) and then coordinat-
ing the different roles.
A second extension involves the way the

agents compute their joint action. In the orig-
inal formulation of CG, an agent needs to ex-
change information to and from its neighbors in
order to compute its optimal action. This re-
quires a communication channel which can be
sometimes either unavailable or very costly to
use. We propose a modification to the variable
elimination algorithm of (Guestrin et al., 2002a)
that allows each agent to efficiently predict the
optimal action of its neighboring agents, making
communication unnecessary.
The setup of the paper is as follows. In Sec-

tion 2 we review the coordination problem, and



thriller comedy
thriller 1, 1 0, 0
comedy 0, 0 1, 1

Figure 1: A coordination game.

in Section 3 we explain the concept of a CG. In
Section 4 we describe our extensions, the role-
dependent context and the noncommunicative
case. In Section 5 we show some examples and
in Section 6 we conclude and give hints for fur-
ther research.

2 The coordination problem

We review here the agent coordination problem
from a game theoretic point of view. A strategic
game (Osborne and Rubinstein, 1994) is a tuple
(n, A1..n, R1..n) where n is the number of agents,
Ai is the set of actions of agent i and Ri is the
payoff function for agent i. This payoff function
maps the selected joint action A = A1× ...×An

to a real value: Ri(A) → IR. Each agent inde-
pendently selects an action from its action set,
and then receives a payoff based on the actions
selected by all agents. The goal of the agents
is to select, via their individual decisions, the
most profitable joint action.
A fully cooperative setting corresponds to a

so-called coordination game in which all agents
share the same payoff function R1 = . . . = Rn =
R. Figure 1 shows an example of a coordina-
tion game between two agents. Each agent can
choose between two types of movies, either a
thriller or a comedy. They do not know in ad-
vance which movie the other agent will choose.
Choosing the same movie results in an optimal
joint action which offers them payoff 1, other-
wise they receive payoff 0. It is clear that the
agents have to coordinate their actions to max-
imize their payoff.
Formally, the coordination problem can be

seen as the problem of selecting one out of
many Nash equilibria in a coordination game. A
Nash equilibrium defines a joint action a∗ ∈ A
with the property that for every agent i holds
Ri(a

∗
i , a

∗
−i) ≥ Ri(ai, a

∗
−i) for all ai ∈ Ai, where

a−i is the joint action for all agents excluding
agent i. Such an equilibrium joint action is a
steady state from which no agent can profitably
deviate given the actions of the other agents.
For example, the strategic game in Figure 1 has

two Nash equilibria corresponding to the situa-
tions where both agents select the same action.
There are several ways to solve a coordination

game (Boutilier, 1996), for example by using
communication or by imposing social conven-
tions. The latter are constraints on the possible
action choices of the agents. If we assume that
the agents have the ability to identify one an-
other, we can create a simple lexicographic con-
vention using the following three assumptions:

• The set of agents is ordered.

• The set of actions of each agent is ordered.

• These orderings are common knowledge
among agents (Geanakoplos, 1992).

The choice for an optimal joint action pro-
ceeds as follows. The first agent in the agent
ordering chooses an optimal action (that cor-
responds to a Nash equilibrium) that appears
first in its action ordering. The next agent
then chooses its first optimal action in its ac-
tion ordering given the first agent’s choice.
This procedure continues until all agents have
chosen their actions. This general, domain-
independent method will always result in an op-
timal joint action and moreover it can be im-
plemented offline. During execution the agents
do not have to explicitly coordinate their ac-
tions, e.g., via negotiation. If we would impose
the ordering ‘1 Â 2’ (meaning that agent 1 has
priority over agent 2) and ‘thriller Â comedy’
in our example, the second agent knows from
the social conventions that the first will select
the thriller and will therefore also choose the
thriller.
In the above cases it is assumed that the Nash

equilibria can be found and then coordination is
the problem of selecting the same equilibrium.
However, the number of joint actions grows ex-
ponentially with the number of agents, making
it infeasible to determine all equilibria in the
case of many agents. This calls for methods
that first reduce the action space before solving
the coordination problem. One such approach,
explained next, is based on the use of a coor-
dination graph that captures local coordination
requirements between agents.

3 Coordination graphs

A coordination graph (CG) represents the coor-
dination requirements of a system (Guestrin et
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Figure 2: A CG for a 4-agent problem.

al., 2002a). A node in the graph represent an
agent, while edges in the graph define depen-
dencies between agents. Only agents that are
interconnected have to coordinate their actions
at any particular instant. Figure 2 shows a pos-
sible CG for a 4-agent problem. In this example,
G2 has to coordinate with G1, G4 has to coor-
dinate with G3, G3 has to coordinate with both
G4 and G1, and G1 has to coordinate with both
G2 and G3. Using such a graph, the global coor-
dination problem can be replaced by a number
of easier local coordination problems.

If the global payoff function can be decom-
posed as a sum of individual payoff functions,
then solving for the joint optimal action can
be done efficiently using a variable elimination
algorithm (Guestrin et al., 2002a). The algo-
rithm assumes an a priori elimination order that
is common knowledge among the agents, and
that each agent knows its neighbors in the graph
(but not necessarily their payoff function which
might depend on other agents). Each agent
is ‘eliminated’ from the graph by solving a lo-
cal optimization problem that involves only this
agent and its neighbors: the agent collects from
its neighbors all relevant payoff functions, then
optimizes its decision conditionally on its neigh-
bors’ decisions, and communicates the resulting
‘conditional’ payoff function back to its neigh-
bors. A next agent is selected from the list and
the process continues. When all agents have
been eliminated, each agent communicates its
decision to its neighbors in the reverse elimina-
tion order.

The local payoff functions can be matrix-
based (Guestrin et al., 2002a) or rule-
based (Guestrin et al., 2002b). In the latter case
it is possible to use context-specific information
to dynamically update the graph topology. A
‘value rule’ specifies how an agent’s payoff de-
pends on the current context, the latter being

defined as a propositional rule over the state
variables and the actions of the agent’s neigh-
bors. By conditioning on the current state the
agents can discard all irrelevant rules, and this
way the CG can be dynamically updated and
simplified. Consider for example the situation
where two plumbers have to fix the drainage sys-
tem in a house. A value rule can specify that
when the two plumbers are working in the same
house they will get in each other’s way, in which
case the total payoff is decreased. In case the
two plumbers are working in different houses,
this value rule will not apply and the depen-
dency in the graph is dynamically removed.
A limitation of this approach is that it is

based on propositional rules and therefore only
applies to discrete domains. Furthermore, in
the variable elimination algorithm all coordinat-
ing agents must explicitly communicate their lo-
cal payoff functions and their chosen actions us-
ing a message passing scheme. In the following
we show how we can obtain context-specificity
in a coordination graph when the agents reside
in a continuous domain, and show how it is pos-
sible for each agent to predict the selected ac-
tions of its neighbors when communication is
unavailable.

4 Coordination graphs in continuous
domains

We are interested in problems where the agents
are embedded in a continuous domain, have
sensors with which they can observe their sur-
roundings, and need to coordinate their actions.
As a main example we will use the RoboCup
simulation soccer domain (see (de Boer and
Kok, 2002) and references therein) in which a
team of eleven agents have to fulfill a common
goal (scoring more goals than your opponent).
Depending on the situation, certain agents on
the field have to coordinate their actions, for
example the agent that controls the ball must
decide to which nearby agent to pass, etc. Such
dependencies can be modeled by a CG that sat-
isfies the following requirements: (i) its connec-
tivity should be dynamically updated based on
the current (continuous) state, (ii) it should be
sparse in order to keep the dependencies and the
associated local coordination problems as sim-
ple as possible.
We show an example of a continuous-domain



(a) Coordination graph.

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

(b) Reduced graph.

Figure 3: A coordination graph (a), and its
context-specific reduction (b).

CG using the soccer domain. Figure 3(a) shows
a picture of an a priori defined full coordina-
tion graph in which the dependencies between
the teammates (represented by the open circles)
are displayed. Based on the current context,
e.g., the position of the ball in the field, the
graph can be reduced as shown in Figure 3(b).
The subgraph located in the left side of the field
represents the relationship between the defend-
ers trying to keep up a well-balanced defense.
The subgraph on the right illustrates the local
coordination game of the agent controlling the
ball and the potential pass receivers. During
the game, the coordination graph is continu-
ously updated to reflect the current situation
on the field.

Each node in such a CG has a natural ‘loca-
tion’ within the domain while coordination de-
pendencies automatically imply spatial relation-
ships among agents. Moreover, contrary to the
rule-based approach of (Guestrin et al., 2002b),
the graph topology must depend on a context
that is defined over a continuous state variable.

In the above example, the context is based on
the position of the ball which is a real variable
having the soccer field as domain. We elaborate
on this issue next.

4.1 Context-specificity based on roles

Conditioning on a context that is defined over
a continuous domain is difficult in the origi-
nal rule-based CG representation. A way to
‘discretize’ the context is by assigning roles to
agents (Spaan et al., 2002). Roles are a natural
way of introducing domain prior knowledge to
a multiagent problem and provide a flexible so-
lution to the problem of distributing the global
task of a team among its members. In the soc-
cer domain for instance one can easily identify
several roles ranging from ‘active’ or ‘passive’
depending on whether an agent is in control of
the ball or not, to more specialized ones like
‘striker’, ‘defender’, ‘goalkeeper’, etc.
Given a particular local situation, each agent

is assigned a role that is computed based on a
role assignment function that is common knowl-
edge among agents. The set of roles is finite
and ordered, so the most ‘important’ role is as-
signed to an agent first, followed by the sec-
ond most important role, etc. By construction,
the same role can be assigned to more than one
agent, but each agent is assigned only a single
role. Environment-dependent ‘potential’ func-
tions can be used to determine how appropriate
an agent is for a particular role given the cur-
rent context. For details on the assignment of
roles to agents see (Spaan et al., 2002).
Such an assignment of roles provides a nat-

ural way to parametrize a coordination struc-
ture over a continuous domain. The intuition is
that, instead of directly coordinating the agents
in a particular situation, we assign roles to the
agents based on this situation and subsequently
try to ‘coordinate’ the set of roles. For this, a
priori rules exist that specify which roles should
be coordinated and how.
As an example, consider again the left sub-

graph in Figure 3(b) involving four agents that
organize the defense. The leftmost agent takes
the role of sweeper while the other three all
take the role of defender. It is common knowl-
edge among the agents that the sweeper has to
cover the space between the defenders and the
goalkeeper to allow the defenders to advance to
support the attack. As long as the four agents



agree on their role assignment the problem of
their coordination is simplified: the defenders
only need to take into account the action of the
sweeper in their strategy (apart from other fac-
tors such as the opponents) making sure it is
the most retracted field player. In their local
coordination game they do not need to consider
other teammates such the goalkeeper or the at-
tackers. Several other local coordination games
could be going on at the same time (e.g., in the
attack) without interfering with each other.

The roles can be regarded as an abstraction
of a continuous state to a discrete context, al-
lowing the application of existing techniques for
discrete-state CGs. A particular assignment of
k roles to a group of agents with the roles or-
dered according to their importance, can be
regarded as instantiation of a discrete context
variable that can take O(k!) possible values,
corresponding to all possible assignments of the
roles to agents.

In practice, a simple hierarchical role assign-
ment scheme can be used, for example the two
roles ‘active’ and ‘passive’ can be first assigned
based on who is in control of the ball, then
among all ‘passive’ agents additional roles can
be assigned like ‘sweeper’ or ‘striker’, etc. In
other cases, a particular context may reduce the
number of required roles to a manageable quan-
tity. In soccer, for example, k is often equal to
2, which resembles the situation where a player
needs to pass the ball to another player (see also
Section 5).

Roles can reduce the action space of the
agents by ‘locking out’ specific actions. For ex-
ample, the role of the goalkeeper does not in-
clude the action ‘score’, and in a ‘passive’ role
the action ‘shoot’ is deactivated. Such a reduc-
tion of the action space can offer computational
savings, but more importantly it can facilitate
the solution of a local coordination game by re-
stricting the joint action space to a subspace
that contains only one Nash equilibrium. For
example, in Figure 1, if agent 2 is assigned a role
that forbids him to select the action ‘thriller’
(e.g., because he is under 16), then agent 1, as-
suming he knows the role of agent 2, can safely
choose ‘comedy’ resulting in coordination. Note
there is only one Nash equilibrium in the sub-
game formed by removing the action ‘thriller’
from the action set of agent 2.

4.2 Non-communicating agents

Variable elimination in a CG requires that each
agent first receives the payoff functions of its
neighboring agents, and after computing its op-
timal conditional strategy it communicates a
new payoff function back to its neighbors. Sim-
ilarly, in the reverse process each agent needs
to communicate its decision to its neighbors in
order to reach a coordinated joint action. The
elimination order is a priori defined and is com-
mon knowledge among the agents.

When communication is unavailable the vari-
able elimination algorithm can still be used if
we further impose the requirement that the pay-
off function of an agent i is common knowledge
among all agents that are reachable from i in the
CG. Since only agents that are reachable in the
CG need to coordinate their actions, the second
requirement in fact frees agents from having to
communicate their local payoff functions during
optimization.

Moreover, in the noncommunicative case the
elimination order neither has to be fixed in ad-
vance nor has to be common knowledge among
all agents as in (Guestrin et al., 2002a), but
each agent is free to choose any elimination or-
der, e.g., one that allows the agent to quickly
compute its own optimal action. This is pos-
sible because a particular elimination order af-
fects only the speed of the algorithm and not
the computed joint action.

In summary, each agent i maintains a pool
of payoff functions, corresponding to all payoff
functions of the agents in its subgraph. Start-
ing from itself, agent i keeps eliminating agents
using an appropriate elimination order, until it
computes its own optimal action uncondition-
ally on the actions of the others. For each elim-
inated agent j, the newly generated payoff func-
tions are introduced into the pool of payoff func-
tions of agent i and the process continues. In
the worst case, agent i needs to eliminate all
agents j 6= i, for j reachable from i. Note that,
although each agent computes its own action in
a different way (during optimization the pool
will look different for different agents), the re-
sulting joint action will always be the optimal
one.

In terms of complexity, the computational
costs for each individual agent are clearly in-
creased to compensate for the unavailable com-



munication. Instead of only optimizing for its
own action, in the worst case each agent has to
calculate the action of every other agent in the
subgraph. The computational cost per agent
increases thus linearly with the number of new
payoff functions generated during the elimina-
tion procedure. Communication, however, is
not used anymore which allows for a speedup
of the complete algorithm since these extra in-
dividual computations may now run in parallel.
This is in contrast to the original CG approach
where computations need to be performed se-
quentially.
Finally, we note that the common knowledge

assumption is strong and even in cases where
communication is available it cannot always be
guaranteed (Fagin et al., 1995). In multia-
gent systems without communication common
knowledge can be guaranteed if all agents con-
sistently observe the same world state, but this
is also violated in practice due to partial ob-
servability of the environment (a soccer player
has a limited field of view). In our case, when
the agents have to agree on a particular role
distribution given a particular context, the only
requirement we impose is that the role assign-
ment in a particular local context is based on
those parts of the state that are, to a good ap-
proximation, fully observable by all agents in-
volved in the role assignment. For example, in
the left subgraph of Figure 3(b) the particular
role assignment may require that all four agents
observe the position of each other in the field, as
well as the positions of their nearby opponents,
and have a rough estimate of the position of the
ball (e.g., ensuring that the ball is far away).
As long as such a context is encountered, a lo-
cal graph is formed which is disconnected from
the rest of the CG and can be solved separately,
as explained above.

5 Experiments

We have applied the above ideas in our simula-
tion robot soccer team (de Boer and Kok, 2002)
with promising results. In the current phase we
have not developed the CG framework to its full
extent, but have tested it on simple situations
where useful intuition can be gained.
We have implemented a simple role assign-

ment function that assigns the role ‘active’ or
‘passive’ to a teammate based on whether it has
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Figure 4: A simple situation involving one ac-
tive and three passive agents.

the ball or not (for simplicity we focus here on
the case where our team has the ball). At any
instant only one agent is active and all the other
10 teammates are passive. Such a situation is
shown in Figure 4 where one active and three
passive teammates have to pairwise coordinate
their actions.

Moreover, by construction an agent in a
passive role always performs the same action,
namely, moving towards its strategic position.
The latter is computed based on the agent’s
home position (which is fixed throughout the
game and known to all agents) and the position
of the ball in the field which serves as an attrac-
tion point. As mentioned in section 4.1, such a
drastic reduction of an action set greatly simpli-
fies the local coordination game, because now
the action choices of the three passive agents
do not depend on the action choice of the ac-
tive agent. In Figure 4 this is depicted by the
directed edges between the agents.

Assuming the assignment of roles to the
agents is common knowledge among reachable
agents, the coordination problem resides now
fully by the active agent. The latter has to
choose one of the three teammates to pass the
ball to, while we have assumed that the team-
mates follow their strategy independently of
what the active or other passive agents do.
Moreover, assuming that the active agent can
also observe the position of the ball, it can pre-
dict the strategic position and thus the optimal
action of each passive agent. The active player
can now select to pass to the teammate that re-
sults in the highest future reward for the local
coordination game; it will pass to the predicted
position of the teammate with the maximum
clearance from the opponents. Since the simula-



With CG Without

Wins 7 1
Draws 2 2
Losses 1 7
Avg. score 2.1 0.9
St. dev. 1.05 0.9

Table 1: Results of 10 games against ourselves,
with and without CG.

tion server dynamics are known, predicting the
one-step look-ahead reward is trivial (de Boer
and Kok, 2002).
To test this approach we played games

against ourselves, with one team using a CG
and one team using no coordination at all dur-
ing passing. In the latter case an active player
would simply pass the ball to the last observed
position of its teammate. Table 1 shows the
results over the course of 10 full-length games.
The results show that even the use of such a
limited-scope CG has a positive effect on the
performance on the team as a whole. Moreover,
it turned out that the only statistically signif-
icant difference between the two teams was in
passing. The successful passing percentage over
these 10 matches was 80.12% for the team with
the CG and 72.56% for the team without. These
percentages indicate that due to the better coor-
dination of the teammates, fewer mistakes were
made when the ball was passed from one team-
mate to the other.

6 Conclusions and future work

We proposed two extensions to the framework
of coordination graphs (Guestrin et al., 2002a)
for the cases where the agents are embedded in
a continuous domain and/or communication is
unavailable. We argued that context-specificity
is possible by appropriately assigning roles to
the agents given a local situation. We also
showed that we can dispense with communica-
tion if additional assumptions about common
knowledge are introduced. We have not fully
exploited the proposed framework in practice,
but preliminary experiments in simulated soc-
cer give promising results.
As future work, we first want to investigate

the connotations of the common knowledge as-
sumptions and how such knowledge can be ob-

tained in practical situations. Second, we are
interested in applying reinforcement learning
techniques to a continuous-domain CG in order
to learn the payoff functions in an automatic
way, and we are looking for ways to efficiently
plan ahead in a CG when an environment model
is available. Finally, from an application point
of view we want to apply the CG model to its
full extent to the simulation RoboCup, where
the agents need to continuously coordinate their
actions, the context is time- and space-varying,
and communication is restricted.
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